diff -urN oldtree/kernel/sched_staircase.c newtree/kernel/sched_staircase.c
--- oldtree/kernel/sched_staircase.c	1969-12-31 19:00:00.000000000 -0500
+++ newtree/kernel/sched_staircase.c	2006-08-18 16:37:05.000000000 -0400
@@ -0,0 +1,6857 @@
+/*
+ * Staircase CPU Scheduler v16.1
+ * Created by: Con Kolivas
+ *
+ * ONLY Builds if CONFIG_STAIRCASE=y!
+ * 
+ * Staircase CPU Scheduling Policy v16.1 -mm port.
+ */
+
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/nmi.h>
+#include <linux/init.h>
+#include <asm/uaccess.h>
+#include <linux/highmem.h>
+#include <linux/smp_lock.h>
+#include <asm/mmu_context.h>
+#include <linux/interrupt.h>
+#include <linux/capability.h>
+#include <linux/completion.h>
+#include <linux/kernel_stat.h>
+#include <linux/debug_locks.h>
+#include <linux/security.h>
+#include <linux/notifier.h>
+#include <linux/profile.h>
+#include <linux/suspend.h>
+#include <linux/vmalloc.h>
+#include <linux/blkdev.h>
+#include <linux/delay.h>
+#include <linux/smp.h>
+#include <linux/threads.h>
+#include <linux/timer.h>
+#include <linux/rcupdate.h>
+#include <linux/cpu.h>
+#include <linux/cpuset.h>
+#include <linux/percpu.h>
+#include <linux/kthread.h>
+#include <linux/seq_file.h>
+#include <linux/sysctl.h>
+#include <linux/syscalls.h>
+#include <linux/times.h>
+#include <linux/tsacct_kern.h>
+#include <linux/kprobes.h>
+#include <linux/delayacct.h>
+#include <asm/tlb.h>
+
+#include <asm/unistd.h>
+
+/*
+ * sched_interactive - sysctl which allows interactive tasks to have bonus
+ * raise its priority.
+ * sched_compute - sysctl which enables long timeslices and delayed preemption
+ * for compute server usage.
+ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
+ * are allowed to run (over ISO_PERIOD seconds) as real time tasks.
+ */
+int sched_interactive __read_mostly = 1;
+int sched_compute __read_mostly;
+int sched_iso_cpu __read_mostly = 80;
+
+#define ISO_PERIOD		(5 * HZ)
+/*
+ * CACHE_DELAY is the time preemption is delayed in sched_compute mode
+ * and is set to a nominal 10ms.
+ */
+#define CACHE_DELAY	(10 * (HZ) / 1001 + 1)
+
+/*
+ * Convert user-nice values [ -20 ... 0 ... 19 ]
+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
+ * and back.
+ */
+#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
+#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
+#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
+
+/*
+ * 'User priority' is the nice value converted to something we
+ * can work with better when scaling various scheduler parameters,
+ * it's a [ 0 ... 39 ] range.
+ */
+#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
+#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
+#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
+
+/*
+ * Some helpers for converting nanosecond timing to jiffy resolution
+ */
+#define NSJIFFY			(1000000000 / HZ)	/* One jiffy in ns */
+#define NS_TO_JIFFIES(TIME)	((TIME) / NSJIFFY)
+#define JIFFIES_TO_NS(TIME)	((TIME) * NSJIFFY)
+
+#define TASK_PREEMPTS_CURR(p, rq) \
+	((p)->prio < (rq)->curr->prio)
+
+/*
+ * This is the time all tasks within the same priority round robin.
+ * Set to a minimum of 6ms. It is 10 times longer in compute mode.
+ */
+#define _RR_INTERVAL		((6 * HZ / 1001) + 1)
+#define RR_INTERVAL		(_RR_INTERVAL * (1 + 9 * sched_compute))
+#define DEF_TIMESLICE		(RR_INTERVAL * 19)
+
+
+/*
+ * These are the runqueue data structures:
+ */
+
+/*
+ * This is the main, per-CPU runqueue data structure.
+ *
+ * Locking rule: those places that want to lock multiple runqueues
+ * (such as the load balancing or the thread migration code), lock
+ * acquire operations must be ordered by ascending &runqueue.
+ */
+struct rq {
+	spinlock_t lock;
+
+	/*
+	 * nr_running and cpu_load should be in the same cacheline because
+	 * remote CPUs use both these fields when doing load calculation.
+	 */
+	unsigned long nr_running;
+	unsigned long raw_weighted_load;
+#ifdef CONFIG_SMP
+	unsigned long cpu_load[3];
+#endif
+	unsigned long long nr_switches;
+
+	/*
+	 * This is part of a global counter where only the total sum
+	 * over all CPUs matters. A task can increase this counter on
+	 * one CPU and if it got migrated afterwards it may decrease
+	 * it on another CPU. Always updated under the runqueue lock:
+	 */
+	unsigned long nr_uninterruptible;
+
+	unsigned long long timestamp_last_tick;
+	unsigned short cache_ticks, preempted;
+	unsigned long iso_ticks;
+	unsigned short iso_refractory;
+	struct task_struct *curr, *idle;
+	struct mm_struct *prev_mm;
+	unsigned long bitmap[BITS_TO_LONGS(MAX_PRIO + 1)];
+	struct list_head queue[MAX_PRIO];
+	atomic_t nr_iowait;
+
+#ifdef CONFIG_SMP
+	struct sched_domain *sd;
+
+	/* For active balancing */
+	int active_balance;
+	int push_cpu;
+
+	struct task_struct *migration_thread;
+	struct list_head migration_queue;
+#endif
+
+#ifdef CONFIG_SCHEDSTATS
+	/* latency stats */
+	struct sched_info rq_sched_info;
+
+	/* sys_sched_yield() stats */
+	unsigned long yld_exp_empty;
+	unsigned long yld_act_empty;
+	unsigned long yld_both_empty;
+	unsigned long yld_cnt;
+
+	/* schedule() stats */
+	unsigned long sched_switch;
+	unsigned long sched_cnt;
+	unsigned long sched_goidle;
+
+	/* try_to_wake_up() stats */
+	unsigned long ttwu_cnt;
+	unsigned long ttwu_local;
+#endif
+	struct lock_class_key rq_lock_key;
+};
+
+static DEFINE_PER_CPU(struct rq, runqueues);
+
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See detach_destroy_domains: synchronize_sched for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
+#define for_each_domain(cpu, __sd) \
+	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
+
+#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
+#define this_rq()		(&__get_cpu_var(runqueues))
+#define task_rq(p)		cpu_rq(task_cpu(p))
+#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
+
+#ifndef prepare_arch_switch
+# define prepare_arch_switch(next)	do { } while (0)
+#endif
+#ifndef finish_arch_switch
+# define finish_arch_switch(prev)	do { } while (0)
+#endif
+
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
+static inline int task_running(struct rq *rq, struct task_struct *p)
+{
+	return rq->curr == p;
+}
+
+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
+{
+}
+
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
+{
+#ifdef CONFIG_DEBUG_SPINLOCK
+	/* this is a valid case when another task releases the spinlock */
+	rq->lock.owner = current;
+#endif
+	/*
+	 * If we are tracking spinlock dependencies then we have to
+	 * fix up the runqueue lock - which gets 'carried over' from
+	 * prev into current:
+	 */
+	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
+
+	spin_unlock_irq(&rq->lock);
+}
+
+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
+static inline int task_running(struct rq *rq, struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+	return p->oncpu;
+#else
+	return rq->curr == p;
+#endif
+}
+
+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
+{
+#ifdef CONFIG_SMP
+	/*
+	 * We can optimise this out completely for !SMP, because the
+	 * SMP rebalancing from interrupt is the only thing that cares
+	 * here.
+	 */
+	next->oncpu = 1;
+#endif
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+	spin_unlock_irq(&rq->lock);
+#else
+	spin_unlock(&rq->lock);
+#endif
+}
+
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
+{
+#ifdef CONFIG_SMP
+	/*
+	 * After ->oncpu is cleared, the task can be moved to a different CPU.
+	 * We must ensure this doesn't happen until the switch is completely
+	 * finished.
+	 */
+	smp_wmb();
+	prev->oncpu = 0;
+#endif
+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+	local_irq_enable();
+#endif
+}
+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
+
+/*
+ * __task_rq_lock - lock the runqueue a given task resides on.
+ * Must be called interrupts disabled.
+ */
+static inline struct rq *__task_rq_lock(struct task_struct *p)
+	__acquires(rq->lock)
+{
+	struct rq *rq;
+
+repeat_lock_task:
+	rq = task_rq(p);
+	spin_lock(&rq->lock);
+	if (unlikely(rq != task_rq(p))) {
+		spin_unlock(&rq->lock);
+		goto repeat_lock_task;
+	}
+	return rq;
+}
+
+/*
+ * task_rq_lock - lock the runqueue a given task resides on and disable
+ * interrupts.  Note the ordering: we can safely lookup the task_rq without
+ * explicitly disabling preemption.
+ */
+static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
+	__acquires(rq->lock)
+{
+	struct rq *rq;
+
+repeat_lock_task:
+	local_irq_save(*flags);
+	rq = task_rq(p);
+	spin_lock(&rq->lock);
+	if (unlikely(rq != task_rq(p))) {
+		spin_unlock_irqrestore(&rq->lock, *flags);
+		goto repeat_lock_task;
+	}
+	return rq;
+}
+
+static inline void __task_rq_unlock(struct rq *rq)
+	__releases(rq->lock)
+{
+	spin_unlock(&rq->lock);
+}
+
+static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
+	__releases(rq->lock)
+{
+	spin_unlock_irqrestore(&rq->lock, *flags);
+}
+
+#ifdef CONFIG_SCHEDSTATS
+/*
+ * bump this up when changing the output format or the meaning of an existing
+ * format, so that tools can adapt (or abort)
+ */
+#define SCHEDSTAT_VERSION 12
+
+static int show_schedstat(struct seq_file *seq, void *v)
+{
+	int cpu;
+
+	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
+	seq_printf(seq, "timestamp %lu\n", jiffies);
+	for_each_online_cpu(cpu) {
+		struct rq *rq = cpu_rq(cpu);
+#ifdef CONFIG_SMP
+		struct sched_domain *sd;
+		int dcnt = 0;
+#endif
+
+		/* runqueue-specific stats */
+		seq_printf(seq,
+		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
+		    cpu, rq->yld_both_empty,
+		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
+		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
+		    rq->ttwu_cnt, rq->ttwu_local,
+		    rq->rq_sched_info.cpu_time,
+		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
+
+		seq_printf(seq, "\n");
+
+#ifdef CONFIG_SMP
+		/* domain-specific stats */
+		preempt_disable();
+		for_each_domain(cpu, sd) {
+			enum idle_type itype;
+			char mask_str[NR_CPUS];
+
+			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
+			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
+			for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
+					itype++) {
+				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
+				    sd->lb_cnt[itype],
+				    sd->lb_balanced[itype],
+				    sd->lb_failed[itype],
+				    sd->lb_imbalance[itype],
+				    sd->lb_gained[itype],
+				    sd->lb_hot_gained[itype],
+				    sd->lb_nobusyq[itype],
+				    sd->lb_nobusyg[itype]);
+			}
+			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
+			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
+			    sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
+			    sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
+			    sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
+		}
+		preempt_enable();
+#endif
+	}
+	return 0;
+}
+
+static int schedstat_open(struct inode *inode, struct file *file)
+{
+	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
+	char *buf = kmalloc(size, GFP_KERNEL);
+	struct seq_file *m;
+	int res;
+
+	if (!buf)
+		return -ENOMEM;
+	res = single_open(file, show_schedstat, NULL);
+	if (!res) {
+		m = file->private_data;
+		m->buf = buf;
+		m->size = size;
+	} else
+		kfree(buf);
+	return res;
+}
+
+struct file_operations proc_schedstat_operations = {
+	.open    = schedstat_open,
+	.read    = seq_read,
+	.llseek  = seq_lseek,
+	.release = single_release,
+};
+
+/*
+ * Expects runqueue lock to be held for atomicity of update
+ */
+static inline void
+rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
+{
+	if (rq) {
+		rq->rq_sched_info.run_delay += delta_jiffies;
+		rq->rq_sched_info.pcnt++;
+	}
+}
+
+/*
+ * Expects runqueue lock to be held for atomicity of update
+ */
+static inline void
+rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
+{
+	if (rq)
+		rq->rq_sched_info.cpu_time += delta_jiffies;
+}
+# define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)
+# define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)
+#else /* !CONFIG_SCHEDSTATS */
+static inline void
+rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
+{}
+static inline void
+rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
+{}
+# define schedstat_inc(rq, field)	do { } while (0)
+# define schedstat_add(rq, field, amt)	do { } while (0)
+#endif
+
+/*
+ * rq_lock - lock a given runqueue and disable interrupts.
+ */
+static inline struct rq *this_rq_lock(void)
+	__acquires(rq->lock)
+{
+	struct rq *rq;
+
+	local_irq_disable();
+	rq = this_rq();
+	spin_lock(&rq->lock);
+
+	return rq;
+}
+
+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
+/*
+ * Called when a process is dequeued and given the cpu.
+ *
+ * This function is only called from sched_info_arrive(), rather than
+ * dequeue_task(). Even though a task may be queued and dequeued multiple
+ * times as it is shuffled about, we're really interested in knowing how
+ * long it was from the *first* time it was queued to the time that it
+ * finally hit a cpu.
+ */
+static inline void sched_info_dequeued(struct task_struct *t)
+{
+	t->sched_info.last_queued = 0;
+}
+
+/*
+ * Called when a task finally hits the cpu.  We can now calculate how
+ * long it was waiting to run.  We also note when it began so that we
+ * can keep stats on how long its timeslice is.
+ */
+static void sched_info_arrive(struct task_struct *t)
+{
+	unsigned long now = jiffies, delta_jiffies = 0;
+
+	if (t->sched_info.last_queued)
+		delta_jiffies = now - t->sched_info.last_queued;
+	sched_info_dequeued(t);
+	t->sched_info.run_delay += delta_jiffies;
+	t->sched_info.last_arrival = now;
+	t->sched_info.pcnt++;
+
+	rq_sched_info_arrive(task_rq(t), delta_jiffies);
+}
+
+/*
+ * Called when a process is queued.
+ * The time is noted and later used to determine how long we had to wait for
+ * us to reach the cpu.
+ * It is unusual but not impossible for tasks to be dequeued and immediately
+ * requeued: this can happen in sched_yield(),
+ * set_user_nice(), and even load_balance() as it moves tasks from runqueue
+ * to runqueue.
+ *
+ * This function is only called from enqueue_task(), but also only updates
+ * the timestamp if it is already not set.  It's assumed that
+ * sched_info_dequeued() will clear that stamp when appropriate.
+ */
+static inline void sched_info_queued(struct task_struct *t)
+{
+	if (unlikely(sched_info_on()))
+		if (!t->sched_info.last_queued)
+			t->sched_info.last_queued = jiffies;
+}
+
+/*
+ * Called when a process ceases being the active-running process, either
+ * voluntarily or involuntarily.  Now we can calculate how long we ran.
+ */
+static inline void sched_info_depart(struct task_struct *t)
+{
+	unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
+
+	t->sched_info.cpu_time += delta_jiffies;
+	rq_sched_info_depart(task_rq(t), delta_jiffies);
+}
+
+/*
+ * Called when tasks are switched involuntarily due, typically, to expiring
+ * their time slice.  (This may also be called when switching to or from
+ * the idle task.)  We are only called when prev != next.
+ */
+static inline void
+__sched_info_switch(struct task_struct *prev, struct task_struct *next)
+{
+	struct rq *rq = task_rq(prev);
+
+	/*
+	 * prev now departs the cpu.  It's not interesting to record
+	 * stats about how efficient we were at scheduling the idle
+	 * process, however.
+	 */
+	if (prev != rq->idle)
+		sched_info_depart(prev);
+
+	if (next != rq->idle)
+		sched_info_arrive(next);
+}
+static inline void
+sched_info_switch(struct task_struct *prev, struct task_struct *next)
+{
+	if (unlikely(sched_info_on()))
+		__sched_info_switch(prev, next);
+}
+#else
+#define sched_info_queued(t)		do { } while (0)
+#define sched_info_switch(t, next)	do { } while (0)
+#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
+
+#if BITS_PER_LONG < 64
+static inline void longlimit(unsigned long long *longlong)
+{
+	if (*longlong > (1 << 31))
+		*longlong = 1 << 31;
+}
+#else
+static inline void longlimit(unsigned long long *__unused)
+{
+}
+#endif
+
+/* Get nanosecond clock difference without overflowing unsigned long. */
+static unsigned long ns_diff(unsigned long long v1, unsigned long long v2)
+{
+	unsigned long long vdiff;
+	if (likely(v1 >= v2)) {
+		vdiff = v1 - v2;
+		longlimit(&vdiff);
+	} else {
+		/*
+		 * Rarely the clock appears to go backwards. There should
+		 * always be a positive difference so return 1.
+		 */
+		vdiff = 1;
+	}
+	return (unsigned long)vdiff;
+}
+
+static inline int task_queued(struct task_struct *task)
+{
+	return !list_empty(&task->run_list);
+}
+
+/*
+ * Adding/removing a task to/from a runqueue:
+ */
+static void dequeue_task(struct task_struct *p, struct rq *rq)
+{
+	list_del_init(&p->run_list);
+	if (list_empty(rq->queue + p->prio))
+		__clear_bit(p->prio, rq->bitmap);
+	p->ns_debit = 0;
+}
+
+static void enqueue_task(struct task_struct *p, struct rq *rq)
+{
+	list_add_tail(&p->run_list, rq->queue + p->prio);
+	__set_bit(p->prio, rq->bitmap);
+}
+
+/*
+ * Put task to the end of the run list without the overhead of dequeue
+ * followed by enqueue.
+ */
+static void requeue_task(struct task_struct *p, struct rq *rq, const int prio)
+{
+	list_move_tail(&p->run_list, rq->queue + prio);
+	if (p->prio != prio) {
+		if (list_empty(rq->queue + p->prio))
+			__clear_bit(p->prio, rq->bitmap);
+		p->prio = prio;
+		__set_bit(prio, rq->bitmap);
+	}
+	p->ns_debit = 0;
+}
+
+static inline void enqueue_task_head(struct task_struct *p, struct rq *rq)
+{
+	list_add(&p->run_list, rq->queue + p->prio);
+	__set_bit(p->prio, rq->bitmap);
+}
+
+static unsigned int slice(const struct task_struct *p);
+
+/*
+ * To aid in avoiding the subversion of "niceness" due to uneven distribution
+ * of tasks with abnormal "nice" values across CPUs the contribution that
+ * each task makes to its run queue's load is weighted according to its
+ * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
+ * scaled version of the new time slice allocation that they receive on time
+ * slice expiry etc.
+ */
+
+/*
+ * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
+ * If static_prio_timeslice() is ever changed to break this assumption then
+ * this code will need modification
+ */
+#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
+#define LOAD_WEIGHT(lp) \
+	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
+#define TASK_LOAD_WEIGHT(p)	LOAD_WEIGHT(slice(p))
+#define RTPRIO_TO_LOAD_WEIGHT(rp)	\
+	(LOAD_WEIGHT((RR_INTERVAL + 20 + (rp))))
+
+static void set_load_weight(struct task_struct *p)
+{
+	if (has_rt_policy(p)) {
+#ifdef CONFIG_SMP
+		if (p == task_rq(p)->migration_thread)
+			/*
+			 * The migration thread does the actual balancing.
+			 * Giving its load any weight will skew balancing
+			 * adversely.
+			 */
+			p->load_weight = 0;
+		else
+#endif
+			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
+	} else if (idleprio_task(p)) {
+		/*
+		 * We want idleprio_tasks to have a presence on weighting but
+		 * as small as possible
+		 */
+		p->load_weight = 1;
+	} else
+		p->load_weight = TASK_LOAD_WEIGHT(p);
+}
+
+static inline void
+inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
+{
+	rq->raw_weighted_load += p->load_weight;
+}
+
+static inline void
+dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
+{
+	rq->raw_weighted_load -= p->load_weight;
+}
+
+static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
+{
+	rq->nr_running++;
+	inc_raw_weighted_load(rq, p);
+}
+
+static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
+{
+	rq->nr_running--;
+	dec_raw_weighted_load(rq, p);
+}
+
+/*
+ * __activate_task - move a task to the runqueue.
+ */
+static inline void __activate_task(struct task_struct *p, struct rq *rq)
+{
+	enqueue_task(p, rq);
+	inc_nr_running(p, rq);
+}
+
+/*
+ * __activate_idle_task - move idle task to the _front_ of runqueue.
+ */
+static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
+{
+	enqueue_task_head(p, rq);
+	inc_nr_running(p, rq);
+}
+
+/*
+ * Bonus - How much higher than its base priority an interactive task can run.
+ */
+static inline unsigned int bonus(const struct task_struct *p)
+{
+	return TASK_USER_PRIO(p);
+}
+
+static unsigned int rr_interval(const struct task_struct *p)
+{
+	int nice = TASK_NICE(p);
+
+	if (nice < 0 && !rt_task(p))
+		return RR_INTERVAL * (20 - nice) / 20;
+	return RR_INTERVAL;
+}
+
+/*
+ * slice - the duration a task runs before getting requeued at its best
+ * priority and has its bonus decremented.
+ */
+static unsigned int slice(const struct task_struct *p)
+{
+	unsigned int slice, rr;
+
+	slice = rr = rr_interval(p);
+	if (likely(!rt_task(p)))
+		slice += (39 - TASK_USER_PRIO(p)) * rr;
+	return slice;
+}
+
+/*
+ * We increase our bonus by sleeping more than the time we ran.
+ * The ratio of sleep to run gives us the cpu% that we last ran and determines
+ * the maximum bonus we can acquire.
+ */
+static void inc_bonus(struct task_struct *p, unsigned long totalrun, unsigned long sleep)
+{
+	unsigned int best_bonus = sleep / (totalrun + 1);
+
+	if (p->bonus >= best_bonus)
+		return;
+	best_bonus = bonus(p);
+	if (p->bonus < best_bonus)
+		p->bonus++;
+}
+
+static inline void dec_bonus(struct task_struct *p)
+{
+	if (p->bonus)
+		p->bonus--;
+}
+
+static inline void slice_overrun(struct task_struct *p)
+{
+	unsigned long ns_slice = JIFFIES_TO_NS(p->slice);
+
+	do {
+		p->totalrun -= ns_slice;
+		dec_bonus(p);
+	} while (unlikely(p->totalrun > ns_slice));
+}
+
+static inline void continue_slice(struct task_struct *p)
+{
+	unsigned long total_run = NS_TO_JIFFIES(p->totalrun);
+
+	if (unlikely(total_run >= p->slice))
+		slice_overrun(p);
+	else {
+		unsigned long remainder;
+
+		p->slice -= total_run;
+		remainder = p->slice % rr_interval(p);
+		if (remainder)
+			p->time_slice = remainder;
+	}
+}
+
+/*
+ * recalc_task_prio - this checks for tasks that have run less than a full
+ * slice and have woken up again soon after, or have just forked a
+ * thread/process and make them continue their old slice instead of starting
+ * a new one at high priority.
+ */
+static inline void recalc_task_prio(struct task_struct *p, const unsigned long long now)
+{
+	unsigned long sleep_time;
+
+	/*
+	 * If this task has managed to run to its lowest priority then
+	 * decrease its bonus and requeue it now at best priority instead
+	 * of possibly flagging around lowest priority. Save up any systime
+	 * that may affect priority on the next reschedule.
+	 */
+	if (p->slice > p->time_slice &&
+	    p->slice - NS_TO_JIFFIES(p->totalrun) < p->time_slice) {
+		dec_bonus(p);
+		p->totalrun = 0;
+		return;
+	}
+
+	/*
+	 * Add the total for this last scheduled run (p->runtime) and system
+	 * time (p->systime) done on behalf of p to the running total so far
+	 * used (p->totalrun).
+	 */
+	p->totalrun += p->runtime + p->systime;
+	sleep_time = ns_diff(now, p->timestamp);
+
+	if (p->systime > sleep_time || p->flags & PF_FORKED)
+		sleep_time = 0;
+	else {
+		sleep_time -= p->systime;
+		/*
+		 * We elevate priority by the amount of time we slept. If we
+		 * sleep longer than our running total and have not set the
+		 * PF_NONSLEEP flag we gain a bonus.
+		 */
+		if (sleep_time >= p->totalrun) {
+			if (!(p->flags & PF_NONSLEEP))
+				inc_bonus(p, p->totalrun, sleep_time);
+			p->totalrun = 0;
+			return;
+		}
+		p->totalrun -= sleep_time;
+	}
+	continue_slice(p);
+}
+
+static inline int idleprio_suitable(const struct task_struct *p)
+{
+	return (!p->mutexes_held &&
+		!(p->flags & (PF_FREEZE | PF_NONSLEEP | PF_EXITING)));
+}
+
+static inline int idleprio(const struct task_struct *p)
+{
+	return (p->prio == IDLEPRIO_PRIO);
+}
+
+/*
+ * __normal_prio - dynamic priority dependent on bonus.
+ * The priority normally decreases by one each RR_INTERVAL.
+ * As the bonus increases the initial priority starts at a higher "stair" or
+ * priority for longer.
+ */
+static inline int __normal_prio(struct task_struct *p)
+{
+	int prio;
+	unsigned int full_slice, used_slice = 0;
+	unsigned int best_bonus, rr;
+
+	if (iso_task(p)) {
+		if (likely(!(p->flags & PF_ISOREF)))
+			/*
+			 * If SCHED_ISO tasks have not used up their real time
+			 * quota they have run just better than highest
+			 * SCHED_NORMAL priority. Otherwise they run as
+			 * SCHED_NORMAL.
+			 */
+			return ISO_PRIO;
+	}
+
+	if (idleprio_task(p)) {
+		if (unlikely(!idleprio_suitable(p))) {
+			/*
+			 * If idleprio tasks are holding a semaphore, mutex,
+			 * or being frozen, schedule at a normal priority.
+			 */
+			p->time_slice = p->slice % RR_INTERVAL ? : RR_INTERVAL;
+			return MIN_USER_PRIO;
+		}
+		return IDLEPRIO_PRIO;
+	}
+
+	full_slice = slice(p);
+	if (full_slice > p->slice)
+		used_slice = full_slice - p->slice;
+
+	best_bonus = bonus(p);
+	prio = MAX_RT_PRIO + best_bonus;
+	if (sched_interactive && !sched_compute && !batch_task(p))
+		prio -= p->bonus;
+
+	rr = rr_interval(p);
+	prio += used_slice / rr;
+	if (prio > MIN_USER_PRIO)
+		prio = MIN_USER_PRIO;
+	return prio;
+}
+
+/*
+ * Calculate the expected normal priority: i.e. priority
+ * without taking RT-inheritance into account. Might be
+ * boosted by interactivity modifiers. Changes upon fork,
+ * setprio syscalls, and whenever the interactivity
+ * estimator recalculates.
+ */
+static inline int normal_prio(struct task_struct *p)
+{
+	int prio;
+
+	if (has_rt_policy(p))
+		prio = MAX_RT_PRIO-1 - p->rt_priority;
+	else
+		prio = __normal_prio(p);
+	return prio;
+}
+
+/*
+ * Calculate the current priority, i.e. the priority
+ * taken into account by the scheduler. This value might
+ * be boosted by RT tasks, or might be boosted by
+ * interactivity modifiers. Will be RT if the task got
+ * RT-boosted. If not then it returns p->normal_prio.
+ */
+static int effective_prio(struct task_struct *p)
+{
+	p->normal_prio = normal_prio(p);
+	/*
+	 * If we are RT tasks or we were boosted to RT priority,
+	 * keep the priority unchanged. Otherwise, update priority
+	 * to the normal priority:
+	 */
+	if (!rt_prio(p->prio))
+		return p->normal_prio;
+	return p->prio;
+}
+
+/*
+ * activate_task - move a task to the runqueue and do priority recalculation
+ *
+ * Update all the scheduling statistics stuff. (priority modifiers, etc.)
+ */
+static void activate_task(struct task_struct *p, struct rq *rq, int local)
+{
+	unsigned long long now = sched_clock();
+	unsigned long rr = rr_interval(p);
+
+#ifdef CONFIG_SMP
+	if (!local) {
+		/* Compensate for drifting sched_clock */
+		struct rq *this_rq = this_rq();
+		now = (now - this_rq->timestamp_last_tick)
+			+ rq->timestamp_last_tick;
+	}
+#endif
+	p->slice = slice(p);
+	p->time_slice = p->slice % rr ? : rr;
+	if (!rt_task(p)) {
+		recalc_task_prio(p, now);
+		p->prio = effective_prio(p);
+		p->systime = 0;
+		p->flags &= ~(PF_FORKED | PF_NONSLEEP);
+	}
+	p->timestamp = now;
+	__activate_task(p, rq);
+}
+
+/*
+ * deactivate_task - remove a task from the runqueue.
+ */
+static void deactivate_task(struct task_struct *p, struct rq *rq)
+{
+	dec_nr_running(p, rq);
+	dequeue_task(p, rq);
+}
+
+/*
+ * resched_task - mark a task 'to be rescheduled now'.
+ *
+ * On UP this means the setting of the need_resched flag, on SMP it
+ * might also involve a cross-CPU call to trigger the scheduler on
+ * the target CPU.
+ */
+#ifdef CONFIG_SMP
+
+#ifndef tsk_is_polling
+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
+#endif
+
+static void resched_task(struct task_struct *p)
+{
+	int cpu;
+
+	assert_spin_locked(&task_rq(p)->lock);
+
+	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
+		return;
+
+	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
+
+	cpu = task_cpu(p);
+	if (cpu == smp_processor_id())
+		return;
+
+	/* NEED_RESCHED must be visible before we test polling */
+	smp_mb();
+	if (!tsk_is_polling(p))
+		smp_send_reschedule(cpu);
+}
+#else
+static inline void resched_task(struct task_struct *p)
+{
+	assert_spin_locked(&task_rq(p)->lock);
+	set_tsk_need_resched(p);
+}
+#endif
+
+/**
+ * task_curr - is this task currently executing on a CPU?
+ * @p: the task in question.
+ */
+inline int task_curr(const struct task_struct *p)
+{
+	return cpu_curr(task_cpu(p)) == p;
+}
+
+/* Used instead of source_load when we know the type == 0 */
+unsigned long weighted_cpuload(const int cpu)
+{
+	return cpu_rq(cpu)->raw_weighted_load;
+}
+
+#ifdef CONFIG_SMP
+struct migration_req {
+	struct list_head list;
+
+	struct task_struct *task;
+	int dest_cpu;
+
+	struct completion done;
+};
+
+/*
+ * The task's runqueue lock must be held.
+ * Returns true if you have to wait for migration thread.
+ */
+static int
+migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
+{
+	struct rq *rq = task_rq(p);
+
+	/*
+	 * If the task is not on a runqueue (and not running), then
+	 * it is sufficient to simply update the task's cpu field.
+	 */
+	if (!task_queued(p) && !task_running(rq, p)) {
+		set_task_cpu(p, dest_cpu);
+		return 0;
+	}
+
+	init_completion(&req->done);
+	req->task = p;
+	req->dest_cpu = dest_cpu;
+	list_add(&req->list, &rq->migration_queue);
+
+	return 1;
+}
+
+/*
+ * wait_task_inactive - wait for a thread to unschedule.
+ *
+ * The caller must ensure that the task *will* unschedule sometime soon,
+ * else this function might spin for a *long* time. This function can't
+ * be called with interrupts off, or it may introduce deadlock with
+ * smp_call_function() if an IPI is sent by the same process we are
+ * waiting to become inactive.
+ */
+void wait_task_inactive(struct task_struct *p)
+{
+	unsigned long flags;
+	struct rq *rq;
+	int preempted;
+
+repeat:
+	rq = task_rq_lock(p, &flags);
+	/* Must be off runqueue entirely, not preempted. */
+	if (unlikely(task_queued(p) || task_running(rq, p))) {
+		/* If it's preempted, we yield.  It could be a while. */
+		preempted = !task_running(rq, p);
+		task_rq_unlock(rq, &flags);
+		cpu_relax();
+		if (preempted)
+			yield();
+		goto repeat;
+	}
+	task_rq_unlock(rq, &flags);
+}
+
+/***
+ * kick_process - kick a running thread to enter/exit the kernel
+ * @p: the to-be-kicked thread
+ *
+ * Cause a process which is running on another CPU to enter
+ * kernel-mode, without any delay. (to get signals handled.)
+ *
+ * NOTE: this function doesnt have to take the runqueue lock,
+ * because all it wants to ensure is that the remote task enters
+ * the kernel. If the IPI races and the task has been migrated
+ * to another CPU then no harm is done and the purpose has been
+ * achieved as well.
+ */
+void kick_process(struct task_struct *p)
+{
+	int cpu;
+
+	preempt_disable();
+	cpu = task_cpu(p);
+	if ((cpu != smp_processor_id()) && task_curr(p))
+		smp_send_reschedule(cpu);
+	preempt_enable();
+}
+
+/*
+ * Return a low guess at the load of a migration-source cpu weighted
+ * according to the scheduling class and "nice" value.
+ *
+ * We want to under-estimate the load of migration sources, to
+ * balance conservatively.
+ */
+static inline unsigned long source_load(int cpu, int type)
+{
+	struct rq *rq = cpu_rq(cpu);
+
+	if (type == 0)
+		return rq->raw_weighted_load;
+
+	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
+}
+
+/*
+ * Return a high guess at the load of a migration-target cpu weighted
+ * according to the scheduling class and "nice" value.
+ */
+static inline unsigned long target_load(int cpu, int type)
+{
+	struct rq *rq = cpu_rq(cpu);
+
+	if (type == 0)
+		return rq->raw_weighted_load;
+
+	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
+}
+
+/*
+ * Return the average load per task on the cpu's run queue
+ */
+static inline unsigned long cpu_avg_load_per_task(int cpu)
+{
+	struct rq *rq = cpu_rq(cpu);
+	unsigned long n = rq->nr_running;
+
+	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
+}
+
+/*
+ * find_idlest_group finds and returns the least busy CPU group within the
+ * domain.
+ */
+static struct sched_group *
+find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
+{
+	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
+	unsigned long min_load = ULONG_MAX, this_load = 0;
+	int load_idx = sd->forkexec_idx;
+	int imbalance = 100 + (sd->imbalance_pct-100)/2;
+
+	do {
+		unsigned long load, avg_load;
+		int local_group;
+		int i;
+
+		/* Skip over this group if it has no CPUs allowed */
+		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
+			goto nextgroup;
+
+		local_group = cpu_isset(this_cpu, group->cpumask);
+
+		/* Tally up the load of all CPUs in the group */
+		avg_load = 0;
+
+		for_each_cpu_mask(i, group->cpumask) {
+			/* Bias balancing toward cpus of our domain */
+			if (local_group)
+				load = source_load(i, load_idx);
+			else
+				load = target_load(i, load_idx);
+
+			avg_load += load;
+		}
+
+		/* Adjust by relative CPU power of the group */
+		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+		if (local_group) {
+			this_load = avg_load;
+			this = group;
+		} else if (avg_load < min_load) {
+			min_load = avg_load;
+			idlest = group;
+		}
+nextgroup:
+		group = group->next;
+	} while (group != sd->groups);
+
+	if (!idlest || 100*this_load < imbalance*min_load)
+		return NULL;
+	return idlest;
+}
+
+/*
+ * find_idlest_queue - find the idlest runqueue among the cpus in group.
+ */
+static int
+find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+{
+	cpumask_t tmp;
+	unsigned long load, min_load = ULONG_MAX;
+	int idlest = -1;
+	int i;
+
+	/* Traverse only the allowed CPUs */
+	cpus_and(tmp, group->cpumask, p->cpus_allowed);
+
+	for_each_cpu_mask(i, tmp) {
+		load = weighted_cpuload(i);
+
+		if (load < min_load || (load == min_load && i == this_cpu)) {
+			min_load = load;
+			idlest = i;
+		}
+	}
+
+	return idlest;
+}
+
+/*
+ * sched_balance_self: balance the current task (running on cpu) in domains
+ * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
+ * SD_BALANCE_EXEC.
+ *
+ * Balance, ie. select the least loaded group.
+ *
+ * Returns the target CPU number, or the same CPU if no balancing is needed.
+ *
+ * preempt must be disabled.
+ */
+static int sched_balance_self(int cpu, int flag)
+{
+	struct task_struct *t = current;
+	struct sched_domain *tmp, *sd = NULL;
+
+	for_each_domain(cpu, tmp) {
+ 		/*
+ 	 	 * If power savings logic is enabled for a domain, stop there.
+ 	 	 */
+		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
+			break;
+		if (tmp->flags & flag)
+			sd = tmp;
+	}
+
+	while (sd) {
+		cpumask_t span;
+		struct sched_group *group;
+		int new_cpu;
+		int weight;
+
+		span = sd->span;
+		group = find_idlest_group(sd, t, cpu);
+		if (!group)
+			goto nextlevel;
+
+		new_cpu = find_idlest_cpu(group, t, cpu);
+		if (new_cpu == -1 || new_cpu == cpu)
+			goto nextlevel;
+
+		/* Now try balancing at a lower domain level */
+		cpu = new_cpu;
+nextlevel:
+		sd = NULL;
+		weight = cpus_weight(span);
+		for_each_domain(cpu, tmp) {
+			if (weight <= cpus_weight(tmp->span))
+				break;
+			if (tmp->flags & flag)
+				sd = tmp;
+		}
+		/* while loop will break here if sd == NULL */
+	}
+
+	return cpu;
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * wake_idle() will wake a task on an idle cpu if task->cpu is
+ * not idle and an idle cpu is available.  The span of cpus to
+ * search starts with cpus closest then further out as needed,
+ * so we always favor a closer, idle cpu.
+ *
+ * Returns the CPU we should wake onto.
+ */
+#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
+static int wake_idle(int cpu, struct task_struct *p)
+{
+	cpumask_t tmp;
+	struct sched_domain *sd;
+	int i;
+
+	if (idle_cpu(cpu))
+		return cpu;
+
+	for_each_domain(cpu, sd) {
+		if (sd->flags & SD_WAKE_IDLE) {
+			cpus_and(tmp, sd->span, p->cpus_allowed);
+			for_each_cpu_mask(i, tmp) {
+				if (idle_cpu(i))
+					return i;
+			}
+		}
+		else
+			break;
+	}
+	return cpu;
+}
+#else
+static inline int wake_idle(int cpu, struct task_struct *p)
+{
+	return cpu;
+}
+#endif
+
+/*
+ * Check to see if p preempts rq->curr and resched if it does. In compute
+ * mode we do not preempt for at least CACHE_DELAY and set rq->preempted.
+ */
+static void fastcall preempt(const struct task_struct *p, struct rq *rq)
+{
+	struct task_struct *curr = rq->curr;
+
+	if (p->prio >= curr->prio)
+		return;
+	if (!sched_compute || rq->cache_ticks >= CACHE_DELAY || !p->mm ||
+	    rt_task(p) || curr == rq->idle) {
+		resched_task(curr);
+		return;
+	}
+	rq->preempted = 1;
+}
+
+/***
+ * try_to_wake_up - wake up a thread
+ * @p: the to-be-woken-up thread
+ * @state: the mask of task states that can be woken
+ * @sync: do a synchronous wakeup?
+ *
+ * Put it on the run-queue if it's not already there. The "current"
+ * thread is always on the run-queue (except when the actual
+ * re-schedule is in progress), and as such you're allowed to do
+ * the simpler "current->state = TASK_RUNNING" to mark yourself
+ * runnable without the overhead of this.
+ *
+ * returns failure only if the task is already active.
+ */
+static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
+{
+	int cpu, this_cpu, success = 0;
+	unsigned long flags;
+	long old_state;
+	struct rq *rq;
+#ifdef CONFIG_SMP
+	struct sched_domain *sd, *this_sd = NULL;
+	unsigned long load, this_load;
+	int new_cpu;
+#endif
+
+	rq = task_rq_lock(p, &flags);
+	old_state = p->state;
+	if (!(old_state & state))
+		goto out;
+
+	if (task_queued(p))
+		goto out_running;
+
+	cpu = task_cpu(p);
+	this_cpu = smp_processor_id();
+
+#ifdef CONFIG_SMP
+	if (unlikely(task_running(rq, p)))
+		goto out_activate;
+
+	new_cpu = cpu;
+
+	schedstat_inc(rq, ttwu_cnt);
+	if (cpu == this_cpu) {
+		schedstat_inc(rq, ttwu_local);
+		goto out_set_cpu;
+	}
+
+	for_each_domain(this_cpu, sd) {
+		if (cpu_isset(cpu, sd->span)) {
+			schedstat_inc(sd, ttwu_wake_remote);
+			this_sd = sd;
+			break;
+		}
+	}
+
+	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
+		goto out_set_cpu;
+
+	/*
+	 * Check for affine wakeup and passive balancing possibilities.
+	 */
+	if (this_sd) {
+		int idx = this_sd->wake_idx;
+		unsigned int imbalance;
+
+		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
+
+		load = source_load(cpu, idx);
+		this_load = target_load(this_cpu, idx);
+
+		new_cpu = this_cpu; /* Wake to this CPU if we can */
+
+		if (this_sd->flags & SD_WAKE_AFFINE) {
+			unsigned long tl = this_load;
+			unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
+
+			/*
+			 * If sync wakeup then subtract the (maximum possible)
+			 * effect of the currently running task from the load
+			 * of the current CPU:
+			 */
+			if (sync)
+				tl -= current->load_weight;
+
+			if ((tl <= load &&
+				tl + target_load(cpu, idx) <= tl_per_task) ||
+				100*(tl + p->load_weight) <= imbalance*load) {
+				/*
+				 * This domain has SD_WAKE_AFFINE and
+				 * p is cache cold in this domain, and
+				 * there is no bad imbalance.
+				 */
+				schedstat_inc(this_sd, ttwu_move_affine);
+				goto out_set_cpu;
+			}
+		}
+
+		/*
+		 * Start passive balancing when half the imbalance_pct
+		 * limit is reached.
+		 */
+		if (this_sd->flags & SD_WAKE_BALANCE) {
+			if (imbalance*this_load <= 100*load) {
+				schedstat_inc(this_sd, ttwu_move_balance);
+				goto out_set_cpu;
+			}
+		}
+	}
+
+	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
+out_set_cpu:
+	new_cpu = wake_idle(new_cpu, p);
+	if (new_cpu != cpu) {
+		set_task_cpu(p, new_cpu);
+		task_rq_unlock(rq, &flags);
+		/* might preempt at this point */
+		rq = task_rq_lock(p, &flags);
+		old_state = p->state;
+		if (!(old_state & state))
+			goto out;
+		if (task_queued(p))
+			goto out_running;
+
+		this_cpu = smp_processor_id();
+		cpu = task_cpu(p);
+	}
+
+out_activate:
+#endif /* CONFIG_SMP */
+	if (old_state == TASK_UNINTERRUPTIBLE)
+		rq->nr_uninterruptible--;
+
+	/*
+	 * Sync wakeups (i.e. those types of wakeups where the waker
+	 * has indicated that it will leave the CPU in short order)
+	 * don't trigger a preemption, if the woken up task will run on
+	 * this cpu. (in this case the 'I will reschedule' promise of
+	 * the waker guarantees that the freshly woken up task is going
+	 * to be considered on this CPU.)
+	 */
+	activate_task(p, rq, cpu == this_cpu);
+	if (!sync || cpu != this_cpu)
+		preempt(p, rq);
+	success = 1;
+
+out_running:
+	p->state = TASK_RUNNING;
+out:
+	if (idleprio_task(p) && !idleprio_suitable(p) && idleprio(p))
+		requeue_task(p, rq, effective_prio(p));
+	task_rq_unlock(rq, &flags);
+
+	return success;
+}
+
+int fastcall wake_up_process(struct task_struct *p)
+{
+	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
+				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
+}
+EXPORT_SYMBOL(wake_up_process);
+
+int fastcall wake_up_state(struct task_struct *p, unsigned int state)
+{
+	return try_to_wake_up(p, state, 0);
+}
+
+/*
+ * Perform scheduler related setup for a newly forked process p.
+ * p is forked by current.
+ */
+void fastcall sched_fork(struct task_struct *p, int clone_flags)
+{
+	int cpu = get_cpu();
+
+#ifdef CONFIG_SMP
+	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
+#endif
+	set_task_cpu(p, cpu);
+
+	/*
+	 * We mark the process as running here, but have not actually
+	 * inserted it onto the runqueue yet. This guarantees that
+	 * nobody will actually run it, and a signal or other external
+	 * event cannot wake it up and insert it on the runqueue either.
+	 */
+	p->state = TASK_RUNNING;
+
+	/*
+	 * Make sure we do not leak PI boosting priority to the child:
+	 */
+	p->prio = current->normal_prio;
+
+	INIT_LIST_HEAD(&p->run_list);
+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
+	if (unlikely(sched_info_on()))
+		memset(&p->sched_info, 0, sizeof(p->sched_info));
+#endif
+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
+	p->oncpu = 0;
+#endif
+#ifdef CONFIG_PREEMPT
+	/* Want to start with kernel preemption disabled. */
+	task_thread_info(p)->preempt_count = 1;
+#endif
+	put_cpu();
+}
+
+/*
+ * wake_up_new_task - wake up a newly created task for the first time.
+ *
+ * This function will do some initial scheduler statistics housekeeping
+ * that must be done for every newly created context, then puts the task
+ * on the runqueue and wakes it.
+ */
+void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
+{
+	unsigned long flags;
+	int this_cpu, cpu;
+	struct rq *rq, *this_rq;
+
+	rq = task_rq_lock(p, &flags);
+	BUG_ON(p->state != TASK_RUNNING);
+	this_cpu = smp_processor_id();
+	cpu = task_cpu(p);
+
+	/* Forked process gets no bonus to prevent fork bombs. */
+	p->bonus = 0;
+	current->flags |= PF_FORKED;
+
+	if (likely(cpu == this_cpu)) {
+		activate_task(p, rq, 1);
+		if (!(clone_flags & CLONE_VM)) {
+			/*
+			 * The VM isn't cloned, so we're in a good position to
+			 * do child-runs-first in anticipation of an exec. This
+			 * usually avoids a lot of COW overhead.
+			 */
+			set_need_resched();
+		}
+		/*
+		 * We skip the following code due to cpu == this_cpu
+	 	 *
+		 *   task_rq_unlock(rq, &flags);
+		 *   this_rq = task_rq_lock(current, &flags);
+		 */
+		this_rq = rq;
+	} else {
+		this_rq = cpu_rq(this_cpu);
+
+		/*
+		 * Not the local CPU - must adjust timestamp. This should
+		 * get optimised away in the !CONFIG_SMP case.
+		 */
+		p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
+					+ rq->timestamp_last_tick;
+		activate_task(p, rq, 0);
+		preempt(p, rq);
+
+		/*
+		 * Parent and child are on different CPUs, now get the
+		 * parent runqueue to update the parent's ->flags:
+		 */
+		task_rq_unlock(rq, &flags);
+		this_rq = task_rq_lock(current, &flags);
+	}
+	task_rq_unlock(this_rq, &flags);
+}
+
+/**
+ * prepare_task_switch - prepare to switch tasks
+ * @rq: the runqueue preparing to switch
+ * @next: the task we are going to switch to.
+ *
+ * This is called with the rq lock held and interrupts off. It must
+ * be paired with a subsequent finish_task_switch after the context
+ * switch.
+ *
+ * prepare_task_switch sets up locking and calls architecture specific
+ * hooks.
+ */
+static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
+{
+	prepare_lock_switch(rq, next);
+	prepare_arch_switch(next);
+}
+
+/**
+ * finish_task_switch - clean up after a task-switch
+ * @rq: runqueue associated with task-switch
+ * @prev: the thread we just switched away from.
+ *
+ * finish_task_switch must be called after the context switch, paired
+ * with a prepare_task_switch call before the context switch.
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
+ * and do any other architecture-specific cleanup actions.
+ *
+ * Note that we may have delayed dropping an mm in context_switch(). If
+ * so, we finish that here outside of the runqueue lock.  (Doing it
+ * with the lock held can cause deadlocks; see schedule() for
+ * details.)
+ */
+static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
+	__releases(rq->lock)
+{
+	struct mm_struct *mm = rq->prev_mm;
+	unsigned long prev_task_flags;
+
+	rq->prev_mm = NULL;
+
+	/*
+	 * A task struct has one reference for the use as "current".
+	 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
+	 * calls schedule one last time. The schedule call will never return,
+	 * and the scheduled task must drop that reference.
+	 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
+	 * still held, otherwise prev could be scheduled on another cpu, die
+	 * there before we look at prev->state, and then the reference would
+	 * be dropped twice.
+	 *		Manfred Spraul <manfred@colorfullife.com>
+	 */
+	prev_task_flags = prev->flags;
+	finish_arch_switch(prev);
+	finish_lock_switch(rq, prev);
+	if (mm)
+		mmdrop(mm);
+	if (unlikely(prev_task_flags & PF_DEAD)) {
+		/*
+		 * Remove function-return probe instances associated with this
+		 * task and put them back on the free list.
+	 	 */
+		kprobe_flush_task(prev);
+		put_task_struct(prev);
+	}
+}
+
+/**
+ * schedule_tail - first thing a freshly forked thread must call.
+ * @prev: the thread we just switched away from.
+ */
+asmlinkage void schedule_tail(struct task_struct *prev)
+	__releases(rq->lock)
+{
+	struct rq *rq = this_rq();
+
+	finish_task_switch(rq, prev);
+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
+	/* In this case, finish_task_switch does not reenable preemption */
+	preempt_enable();
+#endif
+	if (current->set_child_tid)
+		put_user(current->pid, current->set_child_tid);
+}
+
+/*
+ * context_switch - switch to the new MM and the new
+ * thread's register state.
+ */
+static inline struct task_struct *
+context_switch(struct rq *rq, struct task_struct *prev,
+	       struct task_struct *next)
+{
+	struct mm_struct *mm = next->mm;
+	struct mm_struct *oldmm = prev->active_mm;
+
+	if (unlikely(!mm)) {
+		next->active_mm = oldmm;
+		atomic_inc(&oldmm->mm_count);
+		enter_lazy_tlb(oldmm, next);
+	} else
+		switch_mm(oldmm, mm, next);
+
+	if (unlikely(!prev->mm)) {
+		prev->active_mm = NULL;
+		WARN_ON(rq->prev_mm);
+		rq->prev_mm = oldmm;
+	}
+	/*
+	 * Since the runqueue lock will be released by the next
+	 * task (which is an invalid locking op but in the case
+	 * of the scheduler it's an obvious special-case), so we
+	 * do an early lockdep release here:
+	 */
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
+	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
+#endif
+
+	/* Here we just switch the register state and the stack. */
+	switch_to(prev, next, prev);
+
+	return prev;
+}
+
+/*
+ * nr_running, nr_uninterruptible and nr_context_switches:
+ *
+ * externally visible scheduler statistics: current number of runnable
+ * threads, current number of uninterruptible-sleeping threads, total
+ * number of context switches performed since bootup.
+ */
+unsigned long nr_running(void)
+{
+	unsigned long i, sum = 0;
+
+	for_each_online_cpu(i)
+		sum += cpu_rq(i)->nr_running;
+
+	return sum;
+}
+
+unsigned long nr_uninterruptible(void)
+{
+	unsigned long i, sum = 0;
+
+	for_each_possible_cpu(i)
+		sum += cpu_rq(i)->nr_uninterruptible;
+
+	/*
+	 * Since we read the counters lockless, it might be slightly
+	 * inaccurate. Do not allow it to go below zero though:
+	 */
+	if (unlikely((long)sum < 0))
+		sum = 0;
+
+	return sum;
+}
+
+unsigned long long nr_context_switches(void)
+{
+	int i;
+	unsigned long long sum = 0;
+
+	for_each_possible_cpu(i)
+		sum += cpu_rq(i)->nr_switches;
+
+	return sum;
+}
+
+unsigned long nr_iowait(void)
+{
+	unsigned long i, sum = 0;
+
+	for_each_possible_cpu(i)
+		sum += atomic_read(&cpu_rq(i)->nr_iowait);
+
+	return sum;
+}
+
+unsigned long nr_active(void)
+{
+	unsigned long i, running = 0, uninterruptible = 0;
+
+	for_each_online_cpu(i) {
+		running += cpu_rq(i)->nr_running;
+		uninterruptible += cpu_rq(i)->nr_uninterruptible;
+	}
+
+	if (unlikely((long)uninterruptible < 0))
+		uninterruptible = 0;
+
+	return running + uninterruptible;
+}
+
+#ifdef CONFIG_SMP
+
+/*
+ * Is this task likely cache-hot:
+ */
+static inline int
+task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
+{
+	return (long long)(now - p->timestamp) < (long long)sd->cache_hot_time;
+}
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static void double_rq_lock(struct rq *rq1, struct rq *rq2)
+	__acquires(rq1->lock)
+	__acquires(rq2->lock)
+{
+	if (rq1 == rq2) {
+		spin_lock(&rq1->lock);
+		__acquire(rq2->lock);	/* Fake it out ;) */
+	} else {
+		if (rq1 < rq2) {
+			spin_lock(&rq1->lock);
+			spin_lock(&rq2->lock);
+		} else {
+			spin_lock(&rq2->lock);
+			spin_lock(&rq1->lock);
+		}
+	}
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+	__releases(rq1->lock)
+	__releases(rq2->lock)
+{
+	spin_unlock(&rq1->lock);
+	if (rq1 != rq2)
+		spin_unlock(&rq2->lock);
+	else
+		__release(rq2->lock);
+}
+
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
+	__releases(this_rq->lock)
+	__acquires(busiest->lock)
+	__acquires(this_rq->lock)
+{
+	if (unlikely(!spin_trylock(&busiest->lock))) {
+		if (busiest < this_rq) {
+			spin_unlock(&this_rq->lock);
+			spin_lock(&busiest->lock);
+			spin_lock(&this_rq->lock);
+		} else
+			spin_lock(&busiest->lock);
+	}
+}
+
+/*
+ * If dest_cpu is allowed for this process, migrate the task to it.
+ * This is accomplished by forcing the cpu_allowed mask to only
+ * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
+ * the cpu_allowed mask is restored.
+ */
+static void sched_migrate_task(struct task_struct *p, int dest_cpu)
+{
+	struct migration_req req;
+	unsigned long flags;
+	struct rq *rq;
+
+	rq = task_rq_lock(p, &flags);
+	if (!cpu_isset(dest_cpu, p->cpus_allowed)
+	    || unlikely(cpu_is_offline(dest_cpu)))
+		goto out;
+
+	/* force the process onto the specified CPU */
+	if (migrate_task(p, dest_cpu, &req)) {
+		/* Need to wait for migration thread (might exit: take ref). */
+		struct task_struct *mt = rq->migration_thread;
+
+		get_task_struct(mt);
+		task_rq_unlock(rq, &flags);
+		wake_up_process(mt);
+		put_task_struct(mt);
+		wait_for_completion(&req.done);
+
+		return;
+	}
+out:
+	task_rq_unlock(rq, &flags);
+}
+
+/*
+ * sched_exec - execve() is a valuable balancing opportunity, because at
+ * this point the task has the smallest effective memory and cache footprint.
+ */
+void sched_exec(void)
+{
+	int new_cpu, this_cpu = get_cpu();
+	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
+	put_cpu();
+	if (new_cpu != this_cpu)
+		sched_migrate_task(current, new_cpu);
+}
+
+/*
+ * pull_task - move a task from a remote runqueue to the local runqueue.
+ * Both runqueues must be locked.
+ */
+static void pull_task(struct rq *src_rq, struct task_struct *p,
+		      struct rq *this_rq, int this_cpu)
+{
+	dequeue_task(p, src_rq);
+	dec_nr_running(p, src_rq);
+	set_task_cpu(p, this_cpu);
+	inc_nr_running(p, this_rq);
+	enqueue_task(p, this_rq);
+	p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
+				+ this_rq->timestamp_last_tick;
+	/*
+	 * Note that idle threads have a prio of MAX_PRIO, for this test
+	 * to be always true for them.
+	 */
+	preempt(p, this_rq);
+}
+
+/*
+ * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
+ */
+static
+int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
+		     struct sched_domain *sd, enum idle_type idle,
+		     int *all_pinned)
+{
+	/*
+	 * We do not migrate tasks that are:
+	 * 1) running (obviously), or
+	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
+	 * 3) are cache-hot on their current CPU.
+	 */
+	if (!cpu_isset(this_cpu, p->cpus_allowed))
+		return 0;
+	*all_pinned = 0;
+
+	if (task_running(rq, p))
+		return 0;
+
+	/*
+	 * Aggressive migration if:
+	 * 1) task is cache cold, or
+	 * 2) too many balance attempts have failed.
+	 */
+
+	if (sd->nr_balance_failed > sd->cache_nice_tries)
+		return 1;
+
+	if (task_hot(p, rq->timestamp_last_tick, sd))
+		return 0;
+	return 1;
+}
+
+/*
+ * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
+ * load from busiest to this_rq, as part of a balancing operation within
+ * "domain". Returns the number of tasks moved.
+ *
+ * Called with both runqueues locked.
+ */
+static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+		      unsigned long max_nr_move, unsigned long max_load_move,
+		      struct sched_domain *sd, enum idle_type idle,
+		      int *all_pinned)
+{
+	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
+	    best_prio_seen, skip_for_load;
+	struct list_head *head, *curr;
+	struct task_struct *tmp;
+	long rem_load_move;
+
+	if (max_nr_move == 0 || max_load_move == 0)
+		goto out;
+
+	rem_load_move = max_load_move;
+	pinned = 1;
+	this_best_prio = this_rq->curr->prio;
+	best_prio = busiest->curr->prio;
+	/*
+	 * Enable handling of the case where there is more than one task
+	 * with the best priority.   If the current running task is one
+	 * of those with prio==best_prio we know it won't be moved
+	 * and therefore it's safe to override the skip (based on load) of
+	 * any task we find with that prio.
+	 */
+	best_prio_seen = best_prio == busiest->curr->prio;
+
+	/* Start searching at priority 0: */
+	idx = 0;
+skip_bitmap:
+	if (!idx)
+		idx = sched_find_first_bit(busiest->bitmap);
+	else
+		idx = find_next_bit(busiest->bitmap, MAX_PRIO, idx);
+	if (idx >= MAX_PRIO)
+		goto out;
+
+	head = busiest->queue + idx;
+	curr = head->prev;
+skip_queue:
+	tmp = list_entry(curr, struct task_struct, run_list);
+
+	curr = curr->prev;
+
+	/*
+	 * To help distribute high priority tasks accross CPUs we don't
+	 * skip a task if it will be the highest priority task (i.e. smallest
+	 * prio value) on its new queue regardless of its load weight
+	 */
+	skip_for_load = tmp->load_weight > rem_load_move;
+	if (skip_for_load && idx < this_best_prio)
+		skip_for_load = !best_prio_seen && idx == best_prio;
+	if (skip_for_load ||
+	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
+
+		best_prio_seen |= idx == best_prio;
+		if (curr != head)
+			goto skip_queue;
+		idx++;
+		goto skip_bitmap;
+	}
+
+#ifdef CONFIG_SCHEDSTATS
+	if (task_hot(tmp, busiest->timestamp_last_tick, sd))
+		schedstat_inc(sd, lb_hot_gained[idle]);
+#endif
+
+	pull_task(busiest, tmp, this_rq, this_cpu);
+	pulled++;
+	rem_load_move -= tmp->load_weight;
+
+	/*
+	 * We only want to steal up to the prescribed number of tasks
+	 * and the prescribed amount of weighted load.
+	 */
+	if (pulled < max_nr_move && rem_load_move > 0) {
+		if (idx < this_best_prio)
+			this_best_prio = idx;
+		if (curr != head)
+			goto skip_queue;
+		idx++;
+		goto skip_bitmap;
+	}
+out:
+	/*
+	 * Right now, this is the only place pull_task() is called,
+	 * so we can safely collect pull_task() stats here rather than
+	 * inside pull_task().
+	 */
+	schedstat_add(sd, lb_gained[idle], pulled);
+
+	if (all_pinned)
+		*all_pinned = pinned;
+	return pulled;
+}
+
+/*
+ * find_busiest_group finds and returns the busiest CPU group within the
+ * domain. It calculates and returns the amount of weighted load which
+ * should be moved to restore balance via the imbalance parameter.
+ */
+static struct sched_group *
+find_busiest_group(struct sched_domain *sd, int this_cpu,
+		   unsigned long *imbalance, enum idle_type idle, int *sd_idle)
+{
+	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
+	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
+	unsigned long max_pull;
+	unsigned long busiest_load_per_task, busiest_nr_running;
+	unsigned long this_load_per_task, this_nr_running;
+	int load_idx;
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+	int power_savings_balance = 1;
+	unsigned long leader_nr_running = 0, min_load_per_task = 0;
+	unsigned long min_nr_running = ULONG_MAX;
+	struct sched_group *group_min = NULL, *group_leader = NULL;
+#endif
+
+	max_load = this_load = total_load = total_pwr = 0;
+	busiest_load_per_task = busiest_nr_running = 0;
+	this_load_per_task = this_nr_running = 0;
+	if (idle == NOT_IDLE)
+		load_idx = sd->busy_idx;
+	else if (idle == NEWLY_IDLE)
+		load_idx = sd->newidle_idx;
+	else
+		load_idx = sd->idle_idx;
+
+	do {
+		unsigned long load, group_capacity;
+		int local_group;
+		int i;
+		unsigned long sum_nr_running, sum_weighted_load;
+
+		local_group = cpu_isset(this_cpu, group->cpumask);
+
+		/* Tally up the load of all CPUs in the group */
+		sum_weighted_load = sum_nr_running = avg_load = 0;
+
+		for_each_cpu_mask(i, group->cpumask) {
+			struct rq *rq = cpu_rq(i);
+
+			if (*sd_idle && !idle_cpu(i))
+				*sd_idle = 0;
+
+			/* Bias balancing toward cpus of our domain */
+			if (local_group)
+				load = target_load(i, load_idx);
+			else
+				load = source_load(i, load_idx);
+
+			avg_load += load;
+			sum_nr_running += rq->nr_running;
+			sum_weighted_load += rq->raw_weighted_load;
+		}
+
+		total_load += avg_load;
+		total_pwr += group->cpu_power;
+
+		/* Adjust by relative CPU power of the group */
+		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+
+		group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
+
+		if (local_group) {
+			this_load = avg_load;
+			this = group;
+			this_nr_running = sum_nr_running;
+			this_load_per_task = sum_weighted_load;
+		} else if (avg_load > max_load &&
+			   sum_nr_running > group_capacity) {
+			max_load = avg_load;
+			busiest = group;
+			busiest_nr_running = sum_nr_running;
+			busiest_load_per_task = sum_weighted_load;
+		}
+
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+		/*
+		 * Busy processors will not participate in power savings
+		 * balance.
+		 */
+ 		if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
+ 			goto group_next;
+
+		/*
+		 * If the local group is idle or completely loaded
+		 * no need to do power savings balance at this domain
+		 */
+		if (local_group && (this_nr_running >= group_capacity ||
+				    !this_nr_running))
+			power_savings_balance = 0;
+
+ 		/*
+		 * If a group is already running at full capacity or idle,
+		 * don't include that group in power savings calculations
+ 		 */
+ 		if (!power_savings_balance || sum_nr_running >= group_capacity
+		    || !sum_nr_running)
+ 			goto group_next;
+
+ 		/*
+		 * Calculate the group which has the least non-idle load.
+ 		 * This is the group from where we need to pick up the load
+ 		 * for saving power
+ 		 */
+ 		if ((sum_nr_running < min_nr_running) ||
+ 		    (sum_nr_running == min_nr_running &&
+		     first_cpu(group->cpumask) <
+		     first_cpu(group_min->cpumask))) {
+ 			group_min = group;
+ 			min_nr_running = sum_nr_running;
+			min_load_per_task = sum_weighted_load /
+						sum_nr_running;
+ 		}
+
+ 		/*
+		 * Calculate the group which is almost near its
+ 		 * capacity but still has some space to pick up some load
+ 		 * from other group and save more power
+ 		 */
+ 		if (sum_nr_running <= group_capacity - 1) {
+ 			if (sum_nr_running > leader_nr_running ||
+ 			    (sum_nr_running == leader_nr_running &&
+ 			     first_cpu(group->cpumask) >
+ 			      first_cpu(group_leader->cpumask))) {
+ 				group_leader = group;
+ 				leader_nr_running = sum_nr_running;
+ 			}
+		}
+group_next:
+#endif
+		group = group->next;
+	} while (group != sd->groups);
+
+	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
+		goto out_balanced;
+
+	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
+
+	if (this_load >= avg_load ||
+			100*max_load <= sd->imbalance_pct*this_load)
+		goto out_balanced;
+
+	busiest_load_per_task /= busiest_nr_running;
+	/*
+	 * We're trying to get all the cpus to the average_load, so we don't
+	 * want to push ourselves above the average load, nor do we wish to
+	 * reduce the max loaded cpu below the average load, as either of these
+	 * actions would just result in more rebalancing later, and ping-pong
+	 * tasks around. Thus we look for the minimum possible imbalance.
+	 * Negative imbalances (*we* are more loaded than anyone else) will
+	 * be counted as no imbalance for these purposes -- we can't fix that
+	 * by pulling tasks to us.  Be careful of negative numbers as they'll
+	 * appear as very large values with unsigned longs.
+	 */
+	if (max_load <= busiest_load_per_task)
+		goto out_balanced;
+
+	/*
+	 * In the presence of smp nice balancing, certain scenarios can have
+	 * max load less than avg load(as we skip the groups at or below
+	 * its cpu_power, while calculating max_load..)
+	 */
+	if (max_load < avg_load) {
+		*imbalance = 0;
+		goto small_imbalance;
+	}
+
+	/* Don't want to pull so many tasks that a group would go idle */
+	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
+
+	/* How much load to actually move to equalise the imbalance */
+	*imbalance = min(max_pull * busiest->cpu_power,
+				(avg_load - this_load) * this->cpu_power)
+			/ SCHED_LOAD_SCALE;
+
+	/*
+	 * if *imbalance is less than the average load per runnable task
+	 * there is no gaurantee that any tasks will be moved so we'll have
+	 * a think about bumping its value to force at least one task to be
+	 * moved
+	 */
+	if (*imbalance < busiest_load_per_task) {
+		unsigned long tmp, pwr_now, pwr_move;
+		unsigned int imbn;
+
+small_imbalance:
+		pwr_move = pwr_now = 0;
+		imbn = 2;
+		if (this_nr_running) {
+			this_load_per_task /= this_nr_running;
+			if (busiest_load_per_task > this_load_per_task)
+				imbn = 1;
+		} else
+			this_load_per_task = SCHED_LOAD_SCALE;
+
+		if (max_load - this_load >= busiest_load_per_task * imbn) {
+			*imbalance = busiest_load_per_task;
+			return busiest;
+		}
+
+		/*
+		 * OK, we don't have enough imbalance to justify moving tasks,
+		 * however we may be able to increase total CPU power used by
+		 * moving them.
+		 */
+
+		pwr_now += busiest->cpu_power *
+			min(busiest_load_per_task, max_load);
+		pwr_now += this->cpu_power *
+			min(this_load_per_task, this_load);
+		pwr_now /= SCHED_LOAD_SCALE;
+
+		/* Amount of load we'd subtract */
+		tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
+		if (max_load > tmp)
+			pwr_move += busiest->cpu_power *
+				min(busiest_load_per_task, max_load - tmp);
+
+		/* Amount of load we'd add */
+		if (max_load*busiest->cpu_power <
+				busiest_load_per_task*SCHED_LOAD_SCALE)
+			tmp = max_load*busiest->cpu_power/this->cpu_power;
+		else
+			tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
+		pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
+		pwr_move /= SCHED_LOAD_SCALE;
+
+		/* Move if we gain throughput */
+		if (pwr_move <= pwr_now)
+			goto out_balanced;
+
+		*imbalance = busiest_load_per_task;
+	}
+
+	return busiest;
+
+out_balanced:
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+	if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
+		goto ret;
+
+	if (this == group_leader && group_leader != group_min) {
+		*imbalance = min_load_per_task;
+		return group_min;
+	}
+ret:
+#endif
+	*imbalance = 0;
+	return NULL;
+}
+
+/*
+ * find_busiest_queue - find the busiest runqueue among the cpus in group.
+ */
+static struct rq *
+find_busiest_queue(struct sched_group *group, enum idle_type idle,
+		   unsigned long imbalance)
+{
+	struct rq *busiest = NULL, *rq;
+	unsigned long max_load = 0;
+	int i;
+
+	for_each_cpu_mask(i, group->cpumask) {
+		rq = cpu_rq(i);
+
+		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
+			continue;
+
+		if (rq->raw_weighted_load > max_load) {
+			max_load = rq->raw_weighted_load;
+			busiest = rq;
+		}
+	}
+
+	return busiest;
+}
+
+/*
+ * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
+ * so long as it is large enough.
+ */
+#define MAX_PINNED_INTERVAL	512
+
+static inline unsigned long minus_1_or_zero(unsigned long n)
+{
+	return n > 0 ? n - 1 : 0;
+}
+
+/*
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
+ *
+ * Called with this_rq unlocked.
+ */
+static int load_balance(int this_cpu, struct rq *this_rq,
+			struct sched_domain *sd, enum idle_type idle)
+{
+	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
+	struct sched_group *group;
+	unsigned long imbalance;
+	struct rq *busiest;
+
+	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
+	    !sched_smt_power_savings)
+		sd_idle = 1;
+
+	schedstat_inc(sd, lb_cnt[idle]);
+
+	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
+	if (!group) {
+		schedstat_inc(sd, lb_nobusyg[idle]);
+		goto out_balanced;
+	}
+
+	busiest = find_busiest_queue(group, idle, imbalance);
+	if (!busiest) {
+		schedstat_inc(sd, lb_nobusyq[idle]);
+		goto out_balanced;
+	}
+
+	BUG_ON(busiest == this_rq);
+
+	schedstat_add(sd, lb_imbalance[idle], imbalance);
+
+	nr_moved = 0;
+	if (busiest->nr_running > 1) {
+		/*
+		 * Attempt to move tasks. If find_busiest_group has found
+		 * an imbalance but busiest->nr_running <= 1, the group is
+		 * still unbalanced. nr_moved simply stays zero, so it is
+		 * correctly treated as an imbalance.
+		 */
+		double_rq_lock(this_rq, busiest);
+		nr_moved = move_tasks(this_rq, this_cpu, busiest,
+				      minus_1_or_zero(busiest->nr_running),
+				      imbalance, sd, idle, &all_pinned);
+		double_rq_unlock(this_rq, busiest);
+
+		/* All tasks on this runqueue were pinned by CPU affinity */
+		if (unlikely(all_pinned))
+			goto out_balanced;
+	}
+
+	if (!nr_moved) {
+		schedstat_inc(sd, lb_failed[idle]);
+		sd->nr_balance_failed++;
+
+		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
+
+			spin_lock(&busiest->lock);
+
+			/* don't kick the migration_thread, if the curr
+			 * task on busiest cpu can't be moved to this_cpu
+			 */
+			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
+				spin_unlock(&busiest->lock);
+				all_pinned = 1;
+				goto out_one_pinned;
+			}
+
+			if (!busiest->active_balance) {
+				busiest->active_balance = 1;
+				busiest->push_cpu = this_cpu;
+				active_balance = 1;
+			}
+			spin_unlock(&busiest->lock);
+			if (active_balance)
+				wake_up_process(busiest->migration_thread);
+
+			/*
+			 * We've kicked active balancing, reset the failure
+			 * counter.
+			 */
+			sd->nr_balance_failed = sd->cache_nice_tries+1;
+		}
+	} else
+		sd->nr_balance_failed = 0;
+
+	if (likely(!active_balance)) {
+		/* We were unbalanced, so reset the balancing interval */
+		sd->balance_interval = sd->min_interval;
+	} else {
+		/*
+		 * If we've begun active balancing, start to back off. This
+		 * case may not be covered by the all_pinned logic if there
+		 * is only 1 task on the busy runqueue (because we don't call
+		 * move_tasks).
+		 */
+		if (sd->balance_interval < sd->max_interval)
+			sd->balance_interval *= 2;
+	}
+
+	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
+	    !sched_smt_power_savings)
+		return -1;
+	return nr_moved;
+
+out_balanced:
+	schedstat_inc(sd, lb_balanced[idle]);
+
+	sd->nr_balance_failed = 0;
+
+out_one_pinned:
+	/* tune up the balancing interval */
+	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
+			(sd->balance_interval < sd->max_interval))
+		sd->balance_interval *= 2;
+
+	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
+			!sched_smt_power_savings)
+		return -1;
+	return 0;
+}
+
+/*
+ * Check this_cpu to ensure it is balanced within domain. Attempt to move
+ * tasks if there is an imbalance.
+ *
+ * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
+ * this_rq is locked.
+ */
+static int
+load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
+{
+	struct sched_group *group;
+	struct rq *busiest = NULL;
+	unsigned long imbalance;
+	int nr_moved = 0;
+	int sd_idle = 0;
+
+	if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
+		sd_idle = 1;
+
+	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
+	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
+	if (!group) {
+		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
+		goto out_balanced;
+	}
+
+	busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
+	if (!busiest) {
+		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
+		goto out_balanced;
+	}
+
+	BUG_ON(busiest == this_rq);
+
+	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
+
+	nr_moved = 0;
+	if (busiest->nr_running > 1) {
+		/* Attempt to move tasks */
+		double_lock_balance(this_rq, busiest);
+		nr_moved = move_tasks(this_rq, this_cpu, busiest,
+					minus_1_or_zero(busiest->nr_running),
+					imbalance, sd, NEWLY_IDLE, NULL);
+		spin_unlock(&busiest->lock);
+	}
+
+	if (!nr_moved) {
+		schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
+		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
+			return -1;
+	} else
+		sd->nr_balance_failed = 0;
+
+	return nr_moved;
+
+out_balanced:
+	schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
+	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
+					!sched_smt_power_savings)
+		return -1;
+	sd->nr_balance_failed = 0;
+
+	return 0;
+}
+
+/*
+ * idle_balance is called by schedule() if this_cpu is about to become
+ * idle. Attempts to pull tasks from other CPUs.
+ */
+static void idle_balance(int this_cpu, struct rq *this_rq)
+{
+	struct sched_domain *sd;
+
+	for_each_domain(this_cpu, sd) {
+		if (sd->flags & SD_BALANCE_NEWIDLE) {
+			/* If we've pulled tasks over stop searching: */
+			if (load_balance_newidle(this_cpu, this_rq, sd))
+				break;
+		}
+	}
+}
+
+/*
+ * active_load_balance is run by migration threads. It pushes running tasks
+ * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
+ * running on each physical CPU where possible, and avoids physical /
+ * logical imbalances.
+ *
+ * Called with busiest_rq locked.
+ */
+static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
+{
+	int target_cpu = busiest_rq->push_cpu;
+	struct sched_domain *sd;
+	struct rq *target_rq;
+
+	/* Is there any task to move? */
+	if (busiest_rq->nr_running <= 1)
+		return;
+
+	target_rq = cpu_rq(target_cpu);
+
+	/*
+	 * This condition is "impossible", if it occurs
+	 * we need to fix it.  Originally reported by
+	 * Bjorn Helgaas on a 128-cpu setup.
+	 */
+	BUG_ON(busiest_rq == target_rq);
+
+	/* move a task from busiest_rq to target_rq */
+	double_lock_balance(busiest_rq, target_rq);
+
+	/* Search for an sd spanning us and the target CPU. */
+	for_each_domain(target_cpu, sd) {
+		if ((sd->flags & SD_LOAD_BALANCE) &&
+		    cpu_isset(busiest_cpu, sd->span))
+				break;
+	}
+
+	if (likely(sd)) {
+		schedstat_inc(sd, alb_cnt);
+
+		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
+			       RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
+			       NULL))
+			schedstat_inc(sd, alb_pushed);
+		else
+			schedstat_inc(sd, alb_failed);
+	}
+	spin_unlock(&target_rq->lock);
+}
+
+/*
+ * rebalance_tick will get called every timer tick, on every CPU.
+ *
+ * It checks each scheduling domain to see if it is due to be balanced,
+ * and initiates a balancing operation if so.
+ *
+ * Balancing parameters are set up in arch_init_sched_domains.
+ */
+
+/* Don't have all balancing operations going off at once: */
+static inline unsigned long cpu_offset(int cpu)
+{
+	return jiffies + cpu * HZ / NR_CPUS;
+}
+
+static void
+rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
+{
+	unsigned long this_load, interval, j = cpu_offset(this_cpu);
+	struct sched_domain *sd;
+	int i, scale;
+
+	this_load = this_rq->raw_weighted_load;
+
+	/* Update our load: */
+	for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
+		unsigned long old_load, new_load;
+
+		old_load = this_rq->cpu_load[i];
+		new_load = this_load;
+		/*
+		 * Round up the averaging division if load is increasing. This
+		 * prevents us from getting stuck on 9 if the load is 10, for
+		 * example.
+		 */
+		if (new_load > old_load)
+			new_load += scale-1;
+		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
+	}
+
+	for_each_domain(this_cpu, sd) {
+		if (!(sd->flags & SD_LOAD_BALANCE))
+			continue;
+
+		interval = sd->balance_interval;
+		if (idle != SCHED_IDLE)
+			interval *= sd->busy_factor;
+
+		/* scale ms to jiffies */
+		interval = msecs_to_jiffies(interval);
+		if (unlikely(!interval))
+			interval = 1;
+
+		if (j - sd->last_balance >= interval) {
+			if (load_balance(this_cpu, this_rq, sd, idle)) {
+				/*
+				 * We've pulled tasks over so either we're no
+				 * longer idle, or one of our SMT siblings is
+				 * not idle.
+				 */
+				idle = NOT_IDLE;
+			}
+			sd->last_balance += interval;
+		}
+	}
+}
+#else
+/*
+ * on UP we do not need to balance between CPUs:
+ */
+static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
+{
+}
+static inline void idle_balance(int cpu, struct rq *rq)
+{
+}
+#endif
+
+static inline int wake_priority_sleeper(struct rq *rq)
+{
+	int ret = 0;
+
+#ifdef CONFIG_SCHED_SMT
+	spin_lock(&rq->lock);
+	/*
+	 * If an SMT sibling task has been put to sleep for priority
+	 * reasons reschedule the idle task to see if it can now run.
+	 */
+	if (rq->nr_running) {
+		resched_task(rq->idle);
+		ret = 1;
+	}
+	spin_unlock(&rq->lock);
+#endif
+	return ret;
+}
+
+DEFINE_PER_CPU(struct kernel_stat, kstat);
+
+EXPORT_PER_CPU_SYMBOL(kstat);
+
+/*
+ * This is called on clock ticks and on context switches.
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
+ */
+static inline void
+update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
+{
+	p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
+}
+
+/*
+ * Return current->sched_time plus any more ns on the sched_clock
+ * that have not yet been banked.
+ */
+unsigned long long current_sched_time(const struct task_struct *p)
+{
+	unsigned long long ns;
+	unsigned long flags;
+
+	local_irq_save(flags);
+	ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
+	ns = p->sched_time + sched_clock() - ns;
+	local_irq_restore(flags);
+
+	return ns;
+}
+
+/*
+ * Account user cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @hardirq_offset: the offset to subtract from hardirq_count()
+ * @cputime: the cpu time spent in user space since the last update
+ */
+void account_user_time(struct task_struct *p, cputime_t cputime)
+{
+	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+	cputime64_t tmp;
+
+	p->utime = cputime_add(p->utime, cputime);
+
+	/* Add user time to cpustat. */
+	tmp = cputime_to_cputime64(cputime);
+	if (TASK_NICE(p) > 0 || idleprio_task(p))
+		cpustat->nice = cputime64_add(cpustat->nice, tmp);
+	else
+		cpustat->user = cputime64_add(cpustat->user, tmp);
+}
+
+/*
+ * Account system cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @hardirq_offset: the offset to subtract from hardirq_count()
+ * @cputime: the cpu time spent in kernel space since the last update
+ */
+void account_system_time(struct task_struct *p, int hardirq_offset,
+			 cputime_t cputime)
+{
+	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+	struct rq *rq = this_rq();
+	cputime64_t tmp;
+
+	p->stime = cputime_add(p->stime, cputime);
+
+	/* Add system time to cpustat. */
+	tmp = cputime_to_cputime64(cputime);
+	if (hardirq_count() - hardirq_offset)
+		cpustat->irq = cputime64_add(cpustat->irq, tmp);
+	else if (softirq_count())
+		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
+	else if (p != rq->idle)
+		cpustat->system = cputime64_add(cpustat->system, tmp);
+	else if (atomic_read(&rq->nr_iowait) > 0)
+		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
+	else
+		cpustat->idle = cputime64_add(cpustat->idle, tmp);
+	p->systime += NSJIFFY;
+	/* Account for system time used */
+	acct_update_integrals(p);
+}
+
+/*
+ * Account for involuntary wait time.
+ * @p: the process from which the cpu time has been stolen
+ * @steal: the cpu time spent in involuntary wait
+ */
+void account_steal_time(struct task_struct *p, cputime_t steal)
+{
+	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+	cputime64_t tmp = cputime_to_cputime64(steal);
+	struct rq *rq = this_rq();
+
+	if (p == rq->idle) {
+		p->stime = cputime_add(p->stime, steal);
+		if (atomic_read(&rq->nr_iowait) > 0)
+			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
+		else
+			cpustat->idle = cputime64_add(cpustat->idle, tmp);
+	} else
+		cpustat->steal = cputime64_add(cpustat->steal, tmp);
+}
+
+static void time_slice_expired(struct task_struct *p, struct rq *rq)
+{
+	set_tsk_need_resched(p);
+	p->time_slice = rr_interval(p);
+	requeue_task(p, rq, effective_prio(p));
+}
+
+/*
+ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
+ * tasks and set the refractory flag if necessary. There is 10% hysteresis
+ * for unsetting the flag.
+ */
+static inline unsigned int test_ret_isorefractory(struct rq *rq)
+{
+	if (likely(!rq->iso_refractory)) {
+		if (rq->iso_ticks / ISO_PERIOD > sched_iso_cpu)
+			rq->iso_refractory = 1;
+	} else
+		if (rq->iso_ticks / ISO_PERIOD < (sched_iso_cpu * 90 / 100))
+			rq->iso_refractory = 0;
+	return rq->iso_refractory;
+}
+
+/*
+ * This function gets called by the timer code, with HZ frequency.
+ * We call it with interrupts disabled.
+ */
+void scheduler_tick(void)
+{
+	unsigned long long now = sched_clock();
+	struct task_struct *p = current;
+	int cpu = smp_processor_id();
+	struct rq *rq = cpu_rq(cpu);
+	unsigned long debit;
+
+	update_cpu_clock(p, rq, now);
+
+	rq->timestamp_last_tick = now;
+
+	if (p == rq->idle) {
+		if (wake_priority_sleeper(rq))
+			goto out;
+		rebalance_tick(cpu, rq, SCHED_IDLE);
+		return;
+	}
+
+	/* Task might have expired already, but not scheduled off yet */
+	if (unlikely(!task_queued(p))) {
+		set_tsk_need_resched(p);
+		goto out;
+	}
+
+	spin_lock(&rq->lock);
+	if (unlikely((rt_task(p) || (iso_task(p) && !rq->iso_refractory)) &&
+	    p->mm)) {
+			if (rq->iso_ticks <= (ISO_PERIOD * 100) - 100)
+				rq->iso_ticks += 100;
+	} else
+		rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD;
+
+	if (iso_task(p)) {
+		if (unlikely(test_ret_isorefractory(rq))) {
+			if (!(p->flags & PF_ISOREF)) {
+				set_tsk_need_resched(p);
+				p->flags |= PF_ISOREF;
+			}
+		} else
+			p->flags &= ~PF_ISOREF;
+	} else {
+		if (idleprio_task(p) && !idleprio(p) && idleprio_suitable(p))
+			set_tsk_need_resched(p);
+		else
+			/* SCHED_FIFO tasks never run out of timeslice. */
+			if (unlikely(p->policy == SCHED_FIFO))
+				goto out_unlock;
+	}
+
+	debit = ns_diff(rq->timestamp_last_tick, p->timestamp);
+	p->ns_debit += debit;
+	if (p->ns_debit < NSJIFFY)
+		goto out_unlock;
+	p->ns_debit %= NSJIFFY;
+	/*
+	 * Tasks lose bonus each time they use up a full slice().
+	 */
+	if (!--p->slice) {
+		dec_bonus(p);
+		p->totalrun = 0;
+		p->slice = slice(p);
+		time_slice_expired(p, rq);
+		goto out_unlock;
+	}
+	/*
+	 * Tasks that run out of time_slice but still have slice left get
+	 * requeued with a lower priority && RR_INTERVAL time_slice.
+	 */
+	if (!--p->time_slice) {
+		time_slice_expired(p, rq);
+		goto out_unlock;
+	}
+	rq->cache_ticks++;
+	if (rq->preempted && rq->cache_ticks >= CACHE_DELAY)
+		set_tsk_need_resched(p);
+out_unlock:
+	spin_unlock(&rq->lock);
+out:
+	rebalance_tick(cpu, rq, NOT_IDLE);
+}
+
+#ifdef CONFIG_SCHED_SMT
+static inline void wakeup_busy_runqueue(struct rq *rq)
+{
+	/* If an SMT runqueue is sleeping due to priority reasons wake it up */
+	if (rq->curr == rq->idle && rq->nr_running)
+		resched_task(rq->idle);
+}
+
+/*
+ * Called with interrupt disabled and this_rq's runqueue locked.
+ */
+static void wake_sleeping_dependent(int this_cpu)
+{
+	struct sched_domain *tmp, *sd = NULL;
+	int i;
+
+	for_each_domain(this_cpu, tmp) {
+		if (tmp->flags & SD_SHARE_CPUPOWER) {
+			sd = tmp;
+			break;
+		}
+	}
+
+	if (!sd)
+		return;
+
+	for_each_cpu_mask(i, sd->span) {
+		struct rq *smt_rq = cpu_rq(i);
+
+		if (i == this_cpu)
+			continue;
+		if (unlikely(!spin_trylock(&smt_rq->lock)))
+			continue;
+
+		wakeup_busy_runqueue(smt_rq);
+		spin_unlock(&smt_rq->lock);
+	}
+}
+
+/*
+ * number of 'lost' timeslices this task wont be able to fully
+ * utilise, if another task runs on a sibling. This models the
+ * slowdown effect of other tasks running on siblings:
+ */
+static inline unsigned long
+smt_slice(struct task_struct *p, struct sched_domain *sd)
+{
+	return p->slice * (100 - sd->per_cpu_gain) / 100;
+}
+
+/*
+ * To minimise lock contention and not have to drop this_rq's runlock we only
+ * trylock the sibling runqueues and bypass those runqueues if we fail to
+ * acquire their lock. As we only trylock the normal locking order does not
+ * need to be obeyed.
+ */
+static int
+dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
+{
+	struct sched_domain *tmp, *sd = NULL;
+	int ret = 0, i;
+
+	/* kernel/rt threads do not participate in dependent sleeping */
+	if (!p->mm || rt_task(p) || iso_task(p))
+		return 0;
+
+	for_each_domain(this_cpu, tmp) {
+		if (tmp->flags & SD_SHARE_CPUPOWER) {
+			sd = tmp;
+			break;
+		}
+	}
+
+	if (!sd)
+		return 0;
+
+	for_each_cpu_mask(i, sd->span) {
+		struct task_struct *smt_curr;
+		struct rq *smt_rq;
+
+		if (i == this_cpu)
+			continue;
+
+		smt_rq = cpu_rq(i);
+		if (unlikely(!spin_trylock(&smt_rq->lock)))
+			continue;
+
+		smt_curr = smt_rq->curr;
+
+		if (!smt_curr->mm)
+			goto unlock;
+
+		/*
+		 * If a user task with lower static priority than the
+		 * running task on the SMT sibling is trying to schedule,
+		 * delay it till there is proportionately less timeslice
+		 * left of the sibling task to prevent a lower priority
+		 * task from using an unfair proportion of the
+		 * physical cpu's resources. -ck
+		 */
+		if (rt_task(smt_curr) || iso_task(smt_curr)) {
+			/*
+			 * With real time tasks we run non-rt tasks only
+			 * per_cpu_gain% of the time.
+			 */
+			if ((jiffies % DEF_TIMESLICE) >
+				(sd->per_cpu_gain * DEF_TIMESLICE / 100))
+					ret = 1;
+			else if (idleprio(p))
+				ret = 1;
+		} else {
+			if (smt_curr->static_prio < p->static_prio &&
+				!TASK_PREEMPTS_CURR(p, smt_rq) &&
+				smt_slice(smt_curr, sd) > slice(p))
+					ret = 1;
+			else if (idleprio(p) && !idleprio_task(smt_curr) &&
+				smt_curr->slice * sd->per_cpu_gain >
+				slice(smt_curr)) {
+				/*
+				 * With idleprio tasks they run just the last
+				 * per_cpu_gain percent of the smt task's
+				 * slice.
+				 */
+				ret = 1;
+			}
+		}
+unlock:
+		spin_unlock(&smt_rq->lock);
+	}
+	return ret;
+}
+#else
+static inline void wake_sleeping_dependent(int this_cpu)
+{
+}
+static inline int
+dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
+{
+	return 0;
+}
+#endif
+
+#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
+
+void fastcall add_preempt_count(int val)
+{
+	/*
+	 * Underflow?
+	 */
+	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
+		return;
+	preempt_count() += val;
+	/*
+	 * Spinlock count overflowing soon?
+	 */
+	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
+}
+EXPORT_SYMBOL(add_preempt_count);
+
+void fastcall sub_preempt_count(int val)
+{
+	/*
+	 * Underflow?
+	 */
+	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
+		return;
+	/*
+	 * Is the spinlock portion underflowing?
+	 */
+	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
+			!(preempt_count() & PREEMPT_MASK)))
+		return;
+
+	preempt_count() -= val;
+}
+EXPORT_SYMBOL(sub_preempt_count);
+
+#endif
+
+/*
+ * schedule() is the main scheduler function.
+ */
+asmlinkage void __sched schedule(void)
+{
+	struct task_struct *prev, *next;
+	struct list_head *queue;
+	unsigned long long now;
+	long *switch_count;
+	unsigned long debit;
+	struct rq *rq;
+	int cpu, idx;
+
+	/*
+	 * Test if we are atomic.  Since do_exit() needs to call into
+	 * schedule() atomically, we ignore that path for now.
+	 * Otherwise, whine if we are scheduling when we should not be.
+	 */
+	if (unlikely(in_atomic() && !current->exit_state)) {
+		printk(KERN_ERR "BUG: scheduling while atomic: "
+			"%s/0x%08x/%d\n",
+			current->comm, preempt_count(), current->pid);
+		dump_stack();
+	}
+	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+
+need_resched:
+	preempt_disable();
+	prev = current;
+	release_kernel_lock(prev);
+need_resched_nonpreemptible:
+	rq = this_rq();
+
+	/*
+	 * The idle thread is not allowed to schedule!
+	 * Remove this check after it has been exercised a bit.
+	 */
+	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
+		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
+		dump_stack();
+	}
+
+	schedstat_inc(rq, sched_cnt);
+	now = sched_clock();
+
+	spin_lock_irq(&rq->lock);
+	prev->runtime = ns_diff(now, prev->timestamp);
+	debit = ns_diff(now, rq->timestamp_last_tick) % NSJIFFY;
+	prev->ns_debit += debit;
+
+	if (unlikely(prev->flags & PF_DEAD))
+		prev->state = EXIT_DEAD;
+
+	switch_count = &prev->nivcsw;
+	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
+		switch_count = &prev->nvcsw;
+		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
+				unlikely(signal_pending(prev))))
+			prev->state = TASK_RUNNING;
+		else {
+			if (prev->state == TASK_UNINTERRUPTIBLE) {
+				prev->flags |= PF_NONSLEEP;
+				rq->nr_uninterruptible++;
+			}
+			deactivate_task(prev, rq);
+		}
+	}
+
+	cpu = smp_processor_id();
+	if (unlikely(!rq->nr_running)) {
+		idle_balance(cpu, rq);
+		if (!rq->nr_running) {
+			next = rq->idle;
+			wake_sleeping_dependent(cpu);
+			goto switch_tasks;
+		}
+	}
+
+	idx = sched_find_first_bit(rq->bitmap);
+	queue = rq->queue + idx;
+	next = list_entry(queue->next, struct task_struct, run_list);
+
+	if (dependent_sleeper(cpu, rq, next))
+		next = rq->idle;
+	else {
+		prefetch(next);
+		prefetch_stack(next);
+	}
+switch_tasks:
+	if (next == rq->idle)
+		schedstat_inc(rq, sched_goidle);
+	prev->timestamp = now;
+	clear_tsk_need_resched(prev);
+	rcu_qsctr_inc(task_cpu(prev));
+
+	update_cpu_clock(prev, rq, now);
+
+	sched_info_switch(prev, next);
+	if (likely(prev != next)) {
+		rq->preempted = rq->cache_ticks = 0;
+		next->timestamp = now;
+		rq->nr_switches++;
+		rq->curr = next;
+		++*switch_count;
+
+		prepare_task_switch(rq, next);
+		prev = context_switch(rq, prev, next);
+		barrier();
+		/*
+		 * this_rq must be evaluated again because prev may have moved
+		 * CPUs since it called schedule(), thus the 'rq' on its stack
+		 * frame will be invalid.
+		 */
+		finish_task_switch(this_rq(), prev);
+	} else
+		spin_unlock_irq(&rq->lock);
+
+	prev = current;
+	if (unlikely(reacquire_kernel_lock(prev) < 0))
+		goto need_resched_nonpreemptible;
+	preempt_enable_no_resched();
+	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+		goto need_resched;
+}
+EXPORT_SYMBOL(schedule);
+
+#ifdef CONFIG_PREEMPT
+/*
+ * this is the entry point to schedule() from in-kernel preemption
+ * off of preempt_enable.  Kernel preemptions off return from interrupt
+ * occur there and call schedule directly.
+ */
+asmlinkage void __sched preempt_schedule(void)
+{
+	struct thread_info *ti = current_thread_info();
+#ifdef CONFIG_PREEMPT_BKL
+	struct task_struct *task = current;
+	int saved_lock_depth;
+#endif
+	/*
+	 * If there is a non-zero preempt_count or interrupts are disabled,
+	 * we do not want to preempt the current task.  Just return..
+	 */
+	if (unlikely(ti->preempt_count || irqs_disabled()))
+		return;
+
+need_resched:
+	add_preempt_count(PREEMPT_ACTIVE);
+	/*
+	 * We keep the big kernel semaphore locked, but we
+	 * clear ->lock_depth so that schedule() doesnt
+	 * auto-release the semaphore:
+	 */
+#ifdef CONFIG_PREEMPT_BKL
+	saved_lock_depth = task->lock_depth;
+	task->lock_depth = -1;
+#endif
+	schedule();
+#ifdef CONFIG_PREEMPT_BKL
+	task->lock_depth = saved_lock_depth;
+#endif
+	sub_preempt_count(PREEMPT_ACTIVE);
+
+	/* we could miss a preemption opportunity between schedule and now */
+	barrier();
+	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+		goto need_resched;
+}
+EXPORT_SYMBOL(preempt_schedule);
+
+/*
+ * this is the entry point to schedule() from kernel preemption
+ * off of irq context.
+ * Note, that this is called and return with irqs disabled. This will
+ * protect us against recursive calling from irq.
+ */
+asmlinkage void __sched preempt_schedule_irq(void)
+{
+	struct thread_info *ti = current_thread_info();
+#ifdef CONFIG_PREEMPT_BKL
+	struct task_struct *task = current;
+	int saved_lock_depth;
+#endif
+	/* Catch callers which need to be fixed */
+	BUG_ON(ti->preempt_count || !irqs_disabled());
+
+need_resched:
+	add_preempt_count(PREEMPT_ACTIVE);
+	/*
+	 * We keep the big kernel semaphore locked, but we
+	 * clear ->lock_depth so that schedule() doesnt
+	 * auto-release the semaphore:
+	 */
+#ifdef CONFIG_PREEMPT_BKL
+	saved_lock_depth = task->lock_depth;
+	task->lock_depth = -1;
+#endif
+	local_irq_enable();
+	schedule();
+	local_irq_disable();
+#ifdef CONFIG_PREEMPT_BKL
+	task->lock_depth = saved_lock_depth;
+#endif
+	sub_preempt_count(PREEMPT_ACTIVE);
+
+	/* we could miss a preemption opportunity between schedule and now */
+	barrier();
+	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
+		goto need_resched;
+}
+
+#endif /* CONFIG_PREEMPT */
+
+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
+			  void *key)
+{
+	return try_to_wake_up(curr->private, mode, sync);
+}
+EXPORT_SYMBOL(default_wake_function);
+
+/*
+ * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
+ * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
+ * number) then we wake all the non-exclusive tasks and one exclusive task.
+ *
+ * There are circumstances in which we can try to wake a task which has already
+ * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
+ * zero in this (rare) case, and we handle it by continuing to scan the queue.
+ */
+static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
+			     int nr_exclusive, int sync, void *key)
+{
+	struct list_head *tmp, *next;
+
+	list_for_each_safe(tmp, next, &q->task_list) {
+		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
+		unsigned flags = curr->flags;
+
+		if (curr->func(curr, mode, sync, key) &&
+				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
+			break;
+	}
+}
+
+/**
+ * __wake_up - wake up threads blocked on a waitqueue.
+ * @q: the waitqueue
+ * @mode: which threads
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ * @key: is directly passed to the wakeup function
+ */
+void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
+			int nr_exclusive, void *key)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&q->lock, flags);
+	__wake_up_common(q, mode, nr_exclusive, 0, key);
+	spin_unlock_irqrestore(&q->lock, flags);
+}
+EXPORT_SYMBOL(__wake_up);
+
+/*
+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
+ */
+void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
+{
+	__wake_up_common(q, mode, 1, 0, NULL);
+}
+
+/**
+ * __wake_up_sync - wake up threads blocked on a waitqueue.
+ * @q: the waitqueue
+ * @mode: which threads
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
+ *
+ * The sync wakeup differs that the waker knows that it will schedule
+ * away soon, so while the target thread will be woken up, it will not
+ * be migrated to another CPU - ie. the two threads are 'synchronized'
+ * with each other. This can prevent needless bouncing between CPUs.
+ *
+ * On UP it can prevent extra preemption.
+ */
+void fastcall
+__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
+{
+	unsigned long flags;
+	int sync = 1;
+
+	if (unlikely(!q))
+		return;
+
+	if (unlikely(!nr_exclusive))
+		sync = 0;
+
+	spin_lock_irqsave(&q->lock, flags);
+	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
+	spin_unlock_irqrestore(&q->lock, flags);
+}
+EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
+
+void fastcall complete(struct completion *x)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&x->wait.lock, flags);
+	x->done++;
+	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
+			 1, 0, NULL);
+	spin_unlock_irqrestore(&x->wait.lock, flags);
+}
+EXPORT_SYMBOL(complete);
+
+void fastcall complete_all(struct completion *x)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&x->wait.lock, flags);
+	x->done += UINT_MAX/2;
+	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
+			 0, 0, NULL);
+	spin_unlock_irqrestore(&x->wait.lock, flags);
+}
+EXPORT_SYMBOL(complete_all);
+
+void fastcall __sched wait_for_completion(struct completion *x)
+{
+	might_sleep();
+
+	spin_lock_irq(&x->wait.lock);
+	if (!x->done) {
+		DECLARE_WAITQUEUE(wait, current);
+
+		wait.flags |= WQ_FLAG_EXCLUSIVE;
+		__add_wait_queue_tail(&x->wait, &wait);
+		do {
+			__set_current_state(TASK_UNINTERRUPTIBLE);
+			spin_unlock_irq(&x->wait.lock);
+			schedule();
+			spin_lock_irq(&x->wait.lock);
+		} while (!x->done);
+		__remove_wait_queue(&x->wait, &wait);
+	}
+	x->done--;
+	spin_unlock_irq(&x->wait.lock);
+}
+EXPORT_SYMBOL(wait_for_completion);
+
+unsigned long fastcall __sched
+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
+{
+	might_sleep();
+
+	spin_lock_irq(&x->wait.lock);
+	if (!x->done) {
+		DECLARE_WAITQUEUE(wait, current);
+
+		wait.flags |= WQ_FLAG_EXCLUSIVE;
+		__add_wait_queue_tail(&x->wait, &wait);
+		do {
+			__set_current_state(TASK_UNINTERRUPTIBLE);
+			spin_unlock_irq(&x->wait.lock);
+			timeout = schedule_timeout(timeout);
+			spin_lock_irq(&x->wait.lock);
+			if (!timeout) {
+				__remove_wait_queue(&x->wait, &wait);
+				goto out;
+			}
+		} while (!x->done);
+		__remove_wait_queue(&x->wait, &wait);
+	}
+	x->done--;
+out:
+	spin_unlock_irq(&x->wait.lock);
+	return timeout;
+}
+EXPORT_SYMBOL(wait_for_completion_timeout);
+
+int fastcall __sched wait_for_completion_interruptible(struct completion *x)
+{
+	int ret = 0;
+
+	might_sleep();
+
+	spin_lock_irq(&x->wait.lock);
+	if (!x->done) {
+		DECLARE_WAITQUEUE(wait, current);
+
+		wait.flags |= WQ_FLAG_EXCLUSIVE;
+		__add_wait_queue_tail(&x->wait, &wait);
+		do {
+			if (signal_pending(current)) {
+				ret = -ERESTARTSYS;
+				__remove_wait_queue(&x->wait, &wait);
+				goto out;
+			}
+			__set_current_state(TASK_INTERRUPTIBLE);
+			spin_unlock_irq(&x->wait.lock);
+			schedule();
+			spin_lock_irq(&x->wait.lock);
+		} while (!x->done);
+		__remove_wait_queue(&x->wait, &wait);
+	}
+	x->done--;
+out:
+	spin_unlock_irq(&x->wait.lock);
+
+	return ret;
+}
+EXPORT_SYMBOL(wait_for_completion_interruptible);
+
+unsigned long fastcall __sched
+wait_for_completion_interruptible_timeout(struct completion *x,
+					  unsigned long timeout)
+{
+	might_sleep();
+
+	spin_lock_irq(&x->wait.lock);
+	if (!x->done) {
+		DECLARE_WAITQUEUE(wait, current);
+
+		wait.flags |= WQ_FLAG_EXCLUSIVE;
+		__add_wait_queue_tail(&x->wait, &wait);
+		do {
+			if (signal_pending(current)) {
+				timeout = -ERESTARTSYS;
+				__remove_wait_queue(&x->wait, &wait);
+				goto out;
+			}
+			__set_current_state(TASK_INTERRUPTIBLE);
+			spin_unlock_irq(&x->wait.lock);
+			timeout = schedule_timeout(timeout);
+			spin_lock_irq(&x->wait.lock);
+			if (!timeout) {
+				__remove_wait_queue(&x->wait, &wait);
+				goto out;
+			}
+		} while (!x->done);
+		__remove_wait_queue(&x->wait, &wait);
+	}
+	x->done--;
+out:
+	spin_unlock_irq(&x->wait.lock);
+	return timeout;
+}
+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
+
+
+#define	SLEEP_ON_VAR					\
+	unsigned long flags;				\
+	wait_queue_t wait;				\
+	init_waitqueue_entry(&wait, current);
+
+#define SLEEP_ON_HEAD					\
+	spin_lock_irqsave(&q->lock,flags);		\
+	__add_wait_queue(q, &wait);			\
+	spin_unlock(&q->lock);
+
+#define	SLEEP_ON_TAIL					\
+	spin_lock_irq(&q->lock);			\
+	__remove_wait_queue(q, &wait);			\
+	spin_unlock_irqrestore(&q->lock, flags);
+
+void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
+{
+	SLEEP_ON_VAR
+
+	current->state = TASK_INTERRUPTIBLE;
+
+	SLEEP_ON_HEAD
+	schedule();
+	SLEEP_ON_TAIL
+}
+EXPORT_SYMBOL(interruptible_sleep_on);
+
+long fastcall __sched
+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+	SLEEP_ON_VAR
+
+	current->state = TASK_INTERRUPTIBLE;
+
+	SLEEP_ON_HEAD
+	timeout = schedule_timeout(timeout);
+	SLEEP_ON_TAIL
+
+	return timeout;
+}
+EXPORT_SYMBOL(interruptible_sleep_on_timeout);
+
+void fastcall __sched sleep_on(wait_queue_head_t *q)
+{
+	SLEEP_ON_VAR
+
+	current->state = TASK_UNINTERRUPTIBLE;
+
+	SLEEP_ON_HEAD
+	schedule();
+	SLEEP_ON_TAIL
+}
+EXPORT_SYMBOL(sleep_on);
+
+long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+{
+	SLEEP_ON_VAR
+
+	current->state = TASK_UNINTERRUPTIBLE;
+
+	SLEEP_ON_HEAD
+	timeout = schedule_timeout(timeout);
+	SLEEP_ON_TAIL
+
+	return timeout;
+}
+
+EXPORT_SYMBOL(sleep_on_timeout);
+
+#ifdef CONFIG_RT_MUTEXES
+
+/*
+ * rt_mutex_setprio - set the current priority of a task
+ * @p: task
+ * @prio: prio value (kernel-internal form)
+ *
+ * This function changes the 'effective' priority of a task. It does
+ * not touch ->normal_prio like __setscheduler().
+ *
+ * Used by the rt_mutex code to implement priority inheritance logic.
+ */
+void rt_mutex_setprio(struct task_struct *p, int prio)
+{
+	unsigned long flags;
+	int queued, oldprio;
+	struct rq *rq;
+
+	BUG_ON(prio < 0 || prio > MAX_PRIO);
+
+	rq = task_rq_lock(p, &flags);
+
+	oldprio = p->prio;
+	if ((queued = task_queued(p)))
+		dequeue_task(p, rq);
+	p->prio = prio;
+
+	if (queued) {
+		enqueue_task(p, rq);
+		/*
+		 * Reschedule if we are currently running on this runqueue and
+		 * our priority decreased, or if we are not currently running on
+		 * this runqueue and our priority is higher than the current's
+		 */
+		if (task_running(rq, p)) {
+			if (p->prio > oldprio)
+				resched_task(rq->curr);
+		} else
+			preempt(p, rq);
+	}
+	task_rq_unlock(rq, &flags);
+}
+
+#endif
+
+void set_user_nice(struct task_struct *p, long nice)
+{
+	int queued, old_prio,delta;
+	unsigned long flags;
+	struct rq *rq;
+
+	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
+		return;
+	/*
+	 * We have to be careful, if called from sys_setpriority(),
+	 * the task might be in the middle of scheduling on another CPU.
+	 */
+	rq = task_rq_lock(p, &flags);
+	/*
+	 * The RT priorities are set via sched_setscheduler(), but we still
+	 * allow the 'normal' nice value to be set - but as expected
+	 * it wont have any effect on scheduling until the task is
+	 * not SCHED_NORMAL/SCHED_BATCH:
+	 */
+	if (has_rt_policy(p)) {
+		p->static_prio = NICE_TO_PRIO(nice);
+		goto out_unlock;
+	}
+	if ((queued = task_queued(p))) {
+		dequeue_task(p, rq);
+		dec_raw_weighted_load(rq, p);
+	}
+
+	p->static_prio = NICE_TO_PRIO(nice);
+	set_load_weight(p);
+	old_prio = p->prio;
+	if (p->bonus > bonus(p))
+		p->bonus= bonus(p);
+	p->prio = effective_prio(p);
+	delta = p->prio - old_prio;
+
+	if (queued) {
+		enqueue_task(p, rq);
+		inc_raw_weighted_load(rq, p);
+		/*
+		 * If the task increased its priority or is running and
+		 * lowered its priority, then reschedule its CPU:
+		 */
+		if (delta < 0 || ((delta > 0 || idleprio_task(p)) &&
+			task_running(rq, p)))
+				resched_task(rq->curr);
+	}
+out_unlock:
+	task_rq_unlock(rq, &flags);
+}
+EXPORT_SYMBOL(set_user_nice);
+
+/*
+ * can_nice - check if a task can reduce its nice value
+ * @p: task
+ * @nice: nice value
+ */
+int can_nice(const struct task_struct *p, const int nice)
+{
+	/* convert nice value [19,-20] to rlimit style value [1,40] */
+	int nice_rlim = 20 - nice;
+
+	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
+		capable(CAP_SYS_NICE));
+}
+
+#ifdef __ARCH_WANT_SYS_NICE
+
+/*
+ * sys_nice - change the priority of the current process.
+ * @increment: priority increment
+ *
+ * sys_setpriority is a more generic, but much slower function that
+ * does similar things.
+ */
+asmlinkage long sys_nice(int increment)
+{
+	long nice, retval;
+
+	/*
+	 * Setpriority might change our priority at the same moment.
+	 * We don't have to worry. Conceptually one call occurs first
+	 * and we have a single winner.
+	 */
+	if (increment < -40)
+		increment = -40;
+	if (increment > 40)
+		increment = 40;
+
+	nice = PRIO_TO_NICE(current->static_prio) + increment;
+	if (nice < -20)
+		nice = -20;
+	if (nice > 19)
+		nice = 19;
+
+	if (increment < 0 && !can_nice(current, nice))
+		return -EPERM;
+
+	retval = security_task_setnice(current, nice);
+	if (retval)
+		return retval;
+
+	set_user_nice(current, nice);
+	return 0;
+}
+
+#endif
+
+/**
+ * task_prio - return the priority value of a given task.
+ * @p: the task in question.
+ *
+ * This is the priority value as seen by users in /proc.
+ * RT tasks are offset by -200. Normal tasks are centered
+ * around 0, value goes from -16 to +15.
+ */
+int task_prio(const struct task_struct *p)
+{
+	return p->prio - MAX_RT_PRIO;
+}
+
+/**
+ * task_nice - return the nice value of a given task.
+ * @p: the task in question.
+ */
+int task_nice(const struct task_struct *p)
+{
+	return TASK_NICE(p);
+}
+EXPORT_SYMBOL_GPL(task_nice);
+
+/**
+ * idle_cpu - is a given cpu idle currently?
+ * @cpu: the processor in question.
+ */
+int idle_cpu(int cpu)
+{
+	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
+}
+
+/**
+ * idle_task - return the idle task for a given cpu.
+ * @cpu: the processor in question.
+ */
+struct task_struct *idle_task(int cpu)
+{
+	return cpu_rq(cpu)->idle;
+}
+
+/**
+ * find_process_by_pid - find a process with a matching PID value.
+ * @pid: the pid in question.
+ */
+static inline struct task_struct *find_process_by_pid(pid_t pid)
+{
+	return pid ? find_task_by_pid(pid) : current;
+}
+
+/* Actually do priority change: must hold rq lock. */
+static void __setscheduler(struct task_struct *p, int policy, int prio)
+{
+	BUG_ON(task_queued(p));
+
+	p->policy = policy;
+	p->rt_priority = prio;
+	p->normal_prio = normal_prio(p);
+	/* we are holding p->pi_lock already */
+	p->prio = rt_mutex_getprio(p);
+	set_load_weight(p);
+}
+
+/**
+ * sched_setscheduler - change the scheduling policy and/or RT priority of
+ * a thread.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ */
+int sched_setscheduler(struct task_struct *p, int policy,
+		       struct sched_param *param)
+{
+	struct sched_param zero_param = { .sched_priority = 0 };
+	int queued, retval, oldprio, oldpolicy = -1;
+	unsigned long flags;
+	struct rq *rq;
+
+	/* may grab non-irq protected spin_locks */
+	BUG_ON(in_interrupt());
+	if (SCHED_RT(policy) && !capable(CAP_SYS_NICE)) {
+		/*
+		 * If the caller requested an RT policy without having the
+		 * necessary rights, we downgrade the policy to SCHED_ISO.
+		 * We also set the parameter to zero to pass the checks.
+		 */
+		policy = SCHED_ISO;
+		param = &zero_param;
+	}
+recheck:
+	/* double check policy once rq lock held */
+	if (policy < 0)
+		policy = oldpolicy = p->policy;
+	else if (!SCHED_RANGE(policy))
+		return -EINVAL;
+	/*
+	 * Valid priorities for SCHED_FIFO and SCHED_RR are
+	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
+	 * SCHED_BATCH is 0.
+	 */
+	if (param->sched_priority < 0 ||
+	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
+	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
+		return -EINVAL;
+	if ((!SCHED_RT(policy)) != (param->sched_priority == 0))
+		return -EINVAL;
+
+	/*
+	 * Allow unprivileged RT tasks to decrease priority:
+	 */
+	if (!capable(CAP_SYS_NICE)) {
+		if (SCHED_RT(policy)) {
+			/*
+			 * can't change policy to a realtime policy
+			 */
+			if (policy != p->policy &&
+			    !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
+				return -EPERM;
+			/* can't increase priority */
+			if (param->sched_priority > p->rt_priority &&
+			    param->sched_priority >
+			    p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
+				return -EPERM;
+		} else {
+			switch (p->policy) {
+				/*
+				 * Can only downgrade policies but not back to
+				 * SCHED_NORMAL
+				 */
+				case SCHED_ISO:
+					if (policy == SCHED_ISO)
+						goto out;
+					if (policy == SCHED_NORMAL)
+						return -EPERM;
+					break;
+				case SCHED_BATCH:
+					if (policy == SCHED_BATCH)
+						goto out;
+					if (policy != SCHED_IDLEPRIO)
+					    	return -EPERM;
+					break;
+				case SCHED_IDLEPRIO:
+					if (policy == SCHED_IDLEPRIO)
+						goto out;
+					return -EPERM;
+				default:
+					break;
+			}
+		}
+		/* can't change other user's priorities */
+		if ((current->euid != p->euid) &&
+		    (current->euid != p->uid))
+			return -EPERM;
+	}
+
+	if (!(p->mm) && policy == SCHED_IDLEPRIO) {
+		/* Don't allow kernel threads to be SCHED_IDLEPRIO. */
+		return -EINVAL;
+	}
+
+	retval = security_task_setscheduler(p, policy, param);
+	if (retval)
+		return retval;
+	/*
+	 * make sure no PI-waiters arrive (or leave) while we are
+	 * changing the priority of the task:
+	 */
+	spin_lock_irqsave(&p->pi_lock, flags);
+	/*
+	 * To be able to change p->policy safely, the apropriate
+	 * runqueue lock must be held.
+	 */
+	rq = __task_rq_lock(p);
+	/* recheck policy now with rq lock held */
+	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
+		policy = oldpolicy = -1;
+		__task_rq_unlock(rq);
+		spin_unlock_irqrestore(&p->pi_lock, flags);
+		goto recheck;
+	}
+	if ((queued = task_queued(p)))
+		deactivate_task(p, rq);
+	oldprio = p->prio;
+	__setscheduler(p, policy, param->sched_priority);
+	if (queued) {
+		__activate_task(p, rq);
+		/*
+		 * Reschedule if we are currently running on this runqueue and
+		 * our priority decreased, or if we are not currently running on
+		 * this runqueue and our priority is higher than the current's
+		 */
+		if (task_running(rq, p)) {
+			if (p->prio > oldprio)
+				resched_task(rq->curr);
+		} else
+			preempt(p, rq);
+	}
+	__task_rq_unlock(rq);
+	spin_unlock_irqrestore(&p->pi_lock, flags);
+
+	rt_mutex_adjust_pi(p);
+
+out:
+	return 0;
+}
+EXPORT_SYMBOL_GPL(sched_setscheduler);
+
+static int
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+{
+	struct sched_param lparam;
+	struct task_struct *p;
+	int retval;
+
+	if (!param || pid < 0)
+		return -EINVAL;
+	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
+		return -EFAULT;
+	read_lock_irq(&tasklist_lock);
+	p = find_process_by_pid(pid);
+	if (!p) {
+		read_unlock_irq(&tasklist_lock);
+		return -ESRCH;
+	}
+	get_task_struct(p);
+	read_unlock_irq(&tasklist_lock);
+	retval = sched_setscheduler(p, policy, &lparam);
+	put_task_struct(p);
+
+	return retval;
+}
+
+/**
+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
+ * @pid: the pid in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ */
+asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
+				       struct sched_param __user *param)
+{
+	/* negative values for policy are not valid */
+	if (policy < 0)
+		return -EINVAL;
+
+	return do_sched_setscheduler(pid, policy, param);
+}
+
+/**
+ * sys_sched_setparam - set/change the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the new RT priority.
+ */
+asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
+{
+	return do_sched_setscheduler(pid, -1, param);
+}
+
+/**
+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
+ * @pid: the pid in question.
+ */
+asmlinkage long sys_sched_getscheduler(pid_t pid)
+{
+	struct task_struct *p;
+	int retval = -EINVAL;
+
+	if (pid < 0)
+		goto out_nounlock;
+
+	retval = -ESRCH;
+	read_lock(&tasklist_lock);
+	p = find_process_by_pid(pid);
+	if (p) {
+		retval = security_task_getscheduler(p);
+		if (!retval)
+			retval = p->policy;
+	}
+	read_unlock(&tasklist_lock);
+
+out_nounlock:
+	return retval;
+}
+
+/**
+ * sys_sched_getscheduler - get the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the RT priority.
+ */
+asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
+{
+	struct sched_param lp;
+	struct task_struct *p;
+	int retval = -EINVAL;
+
+	if (!param || pid < 0)
+		goto out_nounlock;
+
+	read_lock(&tasklist_lock);
+	p = find_process_by_pid(pid);
+	retval = -ESRCH;
+	if (!p)
+		goto out_unlock;
+
+	retval = security_task_getscheduler(p);
+	if (retval)
+		goto out_unlock;
+
+	lp.sched_priority = p->rt_priority;
+	read_unlock(&tasklist_lock);
+
+	/*
+	 * This one might sleep, we cannot do it with a spinlock held ...
+	 */
+	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
+
+out_nounlock:
+	return retval;
+
+out_unlock:
+	read_unlock(&tasklist_lock);
+	return retval;
+}
+
+long sched_setaffinity(pid_t pid, cpumask_t new_mask)
+{
+	cpumask_t cpus_allowed;
+	struct task_struct *p;
+	int retval;
+
+	lock_cpu_hotplug();
+	read_lock(&tasklist_lock);
+
+	p = find_process_by_pid(pid);
+	if (!p) {
+		read_unlock(&tasklist_lock);
+		unlock_cpu_hotplug();
+		return -ESRCH;
+	}
+
+	/*
+	 * It is not safe to call set_cpus_allowed with the
+	 * tasklist_lock held.  We will bump the task_struct's
+	 * usage count and then drop tasklist_lock.
+	 */
+	get_task_struct(p);
+	read_unlock(&tasklist_lock);
+
+	retval = -EPERM;
+	if ((current->euid != p->euid) && (current->euid != p->uid) &&
+			!capable(CAP_SYS_NICE))
+		goto out_unlock;
+
+	retval = security_task_setscheduler(p, 0, NULL);
+	if (retval)
+		goto out_unlock;
+
+	cpus_allowed = cpuset_cpus_allowed(p);
+	cpus_and(new_mask, new_mask, cpus_allowed);
+	retval = set_cpus_allowed(p, new_mask);
+
+out_unlock:
+	put_task_struct(p);
+	unlock_cpu_hotplug();
+	return retval;
+}
+
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
+			     cpumask_t *new_mask)
+{
+	if (len < sizeof(cpumask_t)) {
+		memset(new_mask, 0, sizeof(cpumask_t));
+	} else if (len > sizeof(cpumask_t)) {
+		len = sizeof(cpumask_t);
+	}
+	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
+}
+
+/**
+ * sys_sched_setaffinity - set the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to the new cpu mask
+ */
+asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
+				      unsigned long __user *user_mask_ptr)
+{
+	cpumask_t new_mask;
+	int retval;
+
+	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
+	if (retval)
+		return retval;
+
+	return sched_setaffinity(pid, new_mask);
+}
+
+/*
+ * Represents all cpu's present in the system
+ * In systems capable of hotplug, this map could dynamically grow
+ * as new cpu's are detected in the system via any platform specific
+ * method, such as ACPI for e.g.
+ */
+
+cpumask_t cpu_present_map __read_mostly;
+EXPORT_SYMBOL(cpu_present_map);
+
+#ifndef CONFIG_SMP
+cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
+EXPORT_SYMBOL(cpu_online_map);
+
+cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
+EXPORT_SYMBOL(cpu_possible_map);
+#endif
+
+long sched_getaffinity(pid_t pid, cpumask_t *mask)
+{
+	struct task_struct *p;
+	int retval;
+
+	lock_cpu_hotplug();
+	read_lock(&tasklist_lock);
+
+	retval = -ESRCH;
+	p = find_process_by_pid(pid);
+	if (!p)
+		goto out_unlock;
+
+	retval = security_task_getscheduler(p);
+	if (retval)
+		goto out_unlock;
+
+	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
+
+out_unlock:
+	read_unlock(&tasklist_lock);
+	unlock_cpu_hotplug();
+	if (retval)
+		return retval;
+
+	return 0;
+}
+
+/**
+ * sys_sched_getaffinity - get the cpu affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
+ */
+asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
+				      unsigned long __user *user_mask_ptr)
+{
+	int ret;
+	cpumask_t mask;
+
+	if (len < sizeof(cpumask_t))
+		return -EINVAL;
+
+	ret = sched_getaffinity(pid, &mask);
+	if (ret < 0)
+		return ret;
+
+	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
+		return -EFAULT;
+
+	return sizeof(cpumask_t);
+}
+
+/**
+ * sys_sched_yield - yield the current processor to other threads.
+ *
+ * This function yields the current CPU by dropping the priority of current
+ * to the lowest priority.
+ */
+asmlinkage long sys_sched_yield(void)
+{
+	struct rq *rq = this_rq_lock();
+	int newprio = current->prio;
+
+	schedstat_inc(rq, yld_cnt);
+
+	newprio = current->prio;
+	schedstat_inc(rq, yld_cnt);
+	current->slice = slice(current);
+	current->time_slice = rr_interval(current);
+	if (likely(!rt_task(current) && !idleprio(current)))
+		newprio = MIN_USER_PRIO;
+
+	requeue_task(current, rq, newprio);
+
+	/*
+	 * Since we are going to call schedule() anyway, there's
+	 * no need to preempt or enable interrupts:
+	 */
+	__release(rq->lock);
+	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
+	_raw_spin_unlock(&rq->lock);
+	preempt_enable_no_resched();
+
+	schedule();
+
+	return 0;
+}
+
+static inline int __resched_legal(int expected_preempt_count)
+{
+	if (unlikely(preempt_count() != expected_preempt_count))
+		return 0;
+	if (unlikely(system_state != SYSTEM_RUNNING))
+		return 0;
+	return 1;
+}
+
+static void __cond_resched(void)
+{
+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
+	__might_sleep(__FILE__, __LINE__);
+#endif
+	/*
+	 * The BKS might be reacquired before we have dropped
+	 * PREEMPT_ACTIVE, which could trigger a second
+	 * cond_resched() call.
+	 */
+	do {
+		add_preempt_count(PREEMPT_ACTIVE);
+		schedule();
+		sub_preempt_count(PREEMPT_ACTIVE);
+	} while (need_resched());
+}
+
+int __sched cond_resched(void)
+{
+	if (need_resched() && __resched_legal(0)) {
+		__cond_resched();
+		return 1;
+	}
+	return 0;
+}
+EXPORT_SYMBOL(cond_resched);
+
+/*
+ * cond_resched_lock() - if a reschedule is pending, drop the given lock,
+ * call schedule, and on return reacquire the lock.
+ *
+ * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
+ * operations here to prevent schedule() from being called twice (once via
+ * spin_unlock(), once by hand).
+ */
+int cond_resched_lock(spinlock_t *lock)
+{
+	int ret = 0;
+
+	if (need_lockbreak(lock)) {
+		spin_unlock(lock);
+		cpu_relax();
+		ret = 1;
+		spin_lock(lock);
+	}
+	if (need_resched() && __resched_legal(1)) {
+		spin_release(&lock->dep_map, 1, _THIS_IP_);
+		_raw_spin_unlock(lock);
+		preempt_enable_no_resched();
+		__cond_resched();
+		ret = 1;
+		spin_lock(lock);
+	}
+	return ret;
+}
+EXPORT_SYMBOL(cond_resched_lock);
+
+int __sched cond_resched_softirq(void)
+{
+	BUG_ON(!in_softirq());
+
+	if (need_resched() && __resched_legal(0)) {
+		raw_local_irq_disable();
+		_local_bh_enable();
+		raw_local_irq_enable();
+		__cond_resched();
+		local_bh_disable();
+		return 1;
+	}
+	return 0;
+}
+EXPORT_SYMBOL(cond_resched_softirq);
+
+/**
+ * yield - yield the current processor to other threads.
+ *
+ * this is a shortcut for kernel-space yielding - it marks the
+ * thread runnable and calls sys_sched_yield().
+ */
+void __sched yield(void)
+{
+	set_current_state(TASK_RUNNING);
+	sys_sched_yield();
+}
+EXPORT_SYMBOL(yield);
+
+/*
+ * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
+ * that process accounting knows that this is a task in IO wait state.
+ *
+ * But don't do that if it is a deliberate, throttling IO wait (this task
+ * has set its backing_dev_info: the queue against which it should throttle)
+ */
+void __sched io_schedule(void)
+{
+	struct rq *rq = &__raw_get_cpu_var(runqueues);
+
+	delayacct_blkio_start();
+	atomic_inc(&rq->nr_iowait);
+	schedule();
+	atomic_dec(&rq->nr_iowait);
+	delayacct_blkio_end();
+}
+EXPORT_SYMBOL(io_schedule);
+
+long __sched io_schedule_timeout(long timeout)
+{
+	struct rq *rq = &__raw_get_cpu_var(runqueues);
+	long ret;
+
+	delayacct_blkio_start();
+	atomic_inc(&rq->nr_iowait);
+	ret = schedule_timeout(timeout);
+	atomic_dec(&rq->nr_iowait);
+	delayacct_blkio_end();
+	return ret;
+}
+
+/**
+ * sys_sched_get_priority_max - return maximum RT priority.
+ * @policy: scheduling class.
+ *
+ * this syscall returns the maximum rt_priority that can be used
+ * by a given scheduling class.
+ */
+asmlinkage long sys_sched_get_priority_max(int policy)
+{
+	int ret = -EINVAL;
+
+	switch (policy) {
+	case SCHED_FIFO:
+	case SCHED_RR:
+		ret = MAX_USER_RT_PRIO-1;
+		break;
+	case SCHED_NORMAL:
+	case SCHED_BATCH:
+	case SCHED_ISO:
+	case SCHED_IDLEPRIO:
+		ret = 0;
+		break;
+	}
+	return ret;
+}
+
+/**
+ * sys_sched_get_priority_min - return minimum RT priority.
+ * @policy: scheduling class.
+ *
+ * this syscall returns the minimum rt_priority that can be used
+ * by a given scheduling class.
+ */
+asmlinkage long sys_sched_get_priority_min(int policy)
+{
+	int ret = -EINVAL;
+
+	switch (policy) {
+	case SCHED_FIFO:
+	case SCHED_RR:
+		ret = 1;
+		break;
+	case SCHED_NORMAL:
+	case SCHED_BATCH:
+	case SCHED_ISO:
+	case SCHED_IDLEPRIO:
+		ret = 0;
+	}
+	return ret;
+}
+
+/**
+ * sys_sched_rr_get_interval - return the default timeslice of a process.
+ * @pid: pid of the process.
+ * @interval: userspace pointer to the timeslice value.
+ *
+ * this syscall writes the default timeslice value of a given process
+ * into the user-space timespec buffer. A value of '0' means infinity.
+ */
+asmlinkage
+long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
+{
+	struct task_struct *p;
+	int retval = -EINVAL;
+	struct timespec t;
+
+	if (pid < 0)
+		goto out_nounlock;
+
+	retval = -ESRCH;
+	read_lock(&tasklist_lock);
+	p = find_process_by_pid(pid);
+	if (!p)
+		goto out_unlock;
+
+	retval = security_task_getscheduler(p);
+	if (retval)
+		goto out_unlock;
+
+	jiffies_to_timespec(p->policy == SCHED_FIFO ?
+				0 : slice(p), &t);
+	read_unlock(&tasklist_lock);
+	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
+out_nounlock:
+	return retval;
+out_unlock:
+	read_unlock(&tasklist_lock);
+	return retval;
+}
+
+static inline struct task_struct *eldest_child(struct task_struct *p)
+{
+	if (list_empty(&p->children))
+		return NULL;
+	return list_entry(p->children.next,struct task_struct,sibling);
+}
+
+static inline struct task_struct *older_sibling(struct task_struct *p)
+{
+	if (p->sibling.prev==&p->parent->children)
+		return NULL;
+	return list_entry(p->sibling.prev,struct task_struct,sibling);
+}
+
+static inline struct task_struct *younger_sibling(struct task_struct *p)
+{
+	if (p->sibling.next==&p->parent->children)
+		return NULL;
+	return list_entry(p->sibling.next,struct task_struct,sibling);
+}
+
+static const char stat_nam[] = "RSDTtZX";
+
+static void show_task(struct task_struct *p)
+{
+	struct task_struct *relative;
+	unsigned long free = 0;
+	unsigned state;
+
+	state = p->state ? __ffs(p->state) + 1 : 0;
+	printk("%-13.13s %c", p->comm,
+		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
+#if (BITS_PER_LONG == 32)
+	if (state == TASK_RUNNING)
+		printk(" running ");
+	else
+		printk(" %08lX ", thread_saved_pc(p));
+#else
+	if (state == TASK_RUNNING)
+		printk("  running task   ");
+	else
+		printk(" %016lx ", thread_saved_pc(p));
+#endif
+#ifdef CONFIG_DEBUG_STACK_USAGE
+	{
+		unsigned long *n = end_of_stack(p);
+		while (!*n)
+			n++;
+		free = (unsigned long)n - (unsigned long)end_of_stack(p);
+	}
+#endif
+	printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
+	if ((relative = eldest_child(p)))
+		printk("%5d ", relative->pid);
+	else
+		printk("      ");
+	if ((relative = younger_sibling(p)))
+		printk("%7d", relative->pid);
+	else
+		printk("       ");
+	if ((relative = older_sibling(p)))
+		printk(" %5d", relative->pid);
+	else
+		printk("      ");
+	if (!p->mm)
+		printk(" (L-TLB)\n");
+	else
+		printk(" (NOTLB)\n");
+
+	if (state != TASK_RUNNING)
+		show_stack(p, NULL);
+}
+
+void show_state(void)
+{
+	struct task_struct *g, *p;
+
+#if (BITS_PER_LONG == 32)
+	printk("\n"
+	       "                                               sibling\n");
+	printk("  task             PC      pid father child younger older\n");
+#else
+	printk("\n"
+	       "                                                       sibling\n");
+	printk("  task                 PC          pid father child younger older\n");
+#endif
+	read_lock(&tasklist_lock);
+	do_each_thread(g, p) {
+		/*
+		 * reset the NMI-timeout, listing all files on a slow
+		 * console might take alot of time:
+		 */
+		touch_nmi_watchdog();
+		show_task(p);
+	} while_each_thread(g, p);
+
+	read_unlock(&tasklist_lock);
+	debug_show_all_locks();
+}
+
+/**
+ * init_idle - set up an idle thread for a given CPU
+ * @idle: task in question
+ * @cpu: cpu the idle task belongs to
+ *
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
+ * flag, to make booting more robust.
+ */
+void __cpuinit init_idle(struct task_struct *idle, int cpu)
+{
+	struct rq *rq = cpu_rq(cpu);
+	unsigned long flags;
+
+	idle->timestamp = sched_clock();
+	idle->prio = idle->normal_prio = MAX_PRIO;
+	idle->state = TASK_RUNNING;
+	idle->cpus_allowed = cpumask_of_cpu(cpu);
+	set_task_cpu(idle, cpu);
+
+	spin_lock_irqsave(&rq->lock, flags);
+	rq->curr = rq->idle = idle;
+#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
+	idle->oncpu = 1;
+#endif
+	spin_unlock_irqrestore(&rq->lock, flags);
+
+	/* Set the preempt count _outside_ the spinlocks! */
+#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
+	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
+#else
+	task_thread_info(idle)->preempt_count = 0;
+#endif
+}
+
+/*
+ * In a system that switches off the HZ timer nohz_cpu_mask
+ * indicates which cpus entered this state. This is used
+ * in the rcu update to wait only for active cpus. For system
+ * which do not switch off the HZ timer nohz_cpu_mask should
+ * always be CPU_MASK_NONE.
+ */
+cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
+
+#ifdef CONFIG_SMP
+/*
+ * This is how migration works:
+ *
+ * 1) we queue a struct migration_req structure in the source CPU's
+ *    runqueue and wake up that CPU's migration thread.
+ * 2) we down() the locked semaphore => thread blocks.
+ * 3) migration thread wakes up (implicitly it forces the migrated
+ *    thread off the CPU)
+ * 4) it gets the migration request and checks whether the migrated
+ *    task is still in the wrong runqueue.
+ * 5) if it's in the wrong runqueue then the migration thread removes
+ *    it and puts it into the right queue.
+ * 6) migration thread up()s the semaphore.
+ * 7) we wake up and the migration is done.
+ */
+
+/*
+ * Change a given task's CPU affinity. Migrate the thread to a
+ * proper CPU and schedule it away if the CPU it's executing on
+ * is removed from the allowed bitmask.
+ *
+ * NOTE: the caller must have a valid reference to the task, the
+ * task must not exit() & deallocate itself prematurely.  The
+ * call is not atomic; no spinlocks may be held.
+ */
+int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
+{
+	struct migration_req req;
+	unsigned long flags;
+	struct rq *rq;
+	int ret = 0;
+
+	rq = task_rq_lock(p, &flags);
+	if (!cpus_intersects(new_mask, cpu_online_map)) {
+		ret = -EINVAL;
+		goto out;
+	}
+
+	p->cpus_allowed = new_mask;
+	/* Can the task run on the task's current CPU? If so, we're done */
+	if (cpu_isset(task_cpu(p), new_mask))
+		goto out;
+
+	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
+		/* Need help from migration thread: drop lock and wait. */
+		task_rq_unlock(rq, &flags);
+		wake_up_process(rq->migration_thread);
+		wait_for_completion(&req.done);
+		tlb_migrate_finish(p->mm);
+		return 0;
+	}
+out:
+	task_rq_unlock(rq, &flags);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(set_cpus_allowed);
+
+/*
+ * Move (not current) task off this cpu, onto dest cpu.  We're doing
+ * this because either it can't run here any more (set_cpus_allowed()
+ * away from this CPU, or CPU going down), or because we're
+ * attempting to rebalance this task on exec (sched_exec).
+ *
+ * So we race with normal scheduler movements, but that's OK, as long
+ * as the task is no longer on this CPU.
+ *
+ * Returns non-zero if task was successfully migrated.
+ */
+static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
+{
+	struct rq *rq_dest, *rq_src;
+	int ret = 0;
+
+	if (unlikely(cpu_is_offline(dest_cpu)))
+		return ret;
+
+	rq_src = cpu_rq(src_cpu);
+	rq_dest = cpu_rq(dest_cpu);
+
+	double_rq_lock(rq_src, rq_dest);
+	/* Already moved. */
+	if (task_cpu(p) != src_cpu)
+		goto out;
+	/* Affinity changed (again). */
+	if (!cpu_isset(dest_cpu, p->cpus_allowed))
+		goto out;
+
+	set_task_cpu(p, dest_cpu);
+	if (task_queued(p)) {
+		/*
+		 * Sync timestamp with rq_dest's before activating.
+		 * The same thing could be achieved by doing this step
+		 * afterwards, and pretending it was a local activate.
+		 * This way is cleaner and logically correct.
+		 */
+		p->timestamp = p->timestamp - rq_src->timestamp_last_tick
+				+ rq_dest->timestamp_last_tick;
+		deactivate_task(p, rq_src);
+		__activate_task(p, rq_dest);
+		preempt(p, rq_dest);
+	}
+	ret = 1;
+out:
+	double_rq_unlock(rq_src, rq_dest);
+	return ret;
+}
+
+/*
+ * migration_thread - this is a highprio system thread that performs
+ * thread migration by bumping thread off CPU then 'pushing' onto
+ * another runqueue.
+ */
+static int migration_thread(void *data)
+{
+	int cpu = (long)data;
+	struct rq *rq;
+
+	rq = cpu_rq(cpu);
+	BUG_ON(rq->migration_thread != current);
+
+	set_current_state(TASK_INTERRUPTIBLE);
+	while (!kthread_should_stop()) {
+		struct migration_req *req;
+		struct list_head *head;
+
+		try_to_freeze();
+
+		spin_lock_irq(&rq->lock);
+
+		if (cpu_is_offline(cpu)) {
+			spin_unlock_irq(&rq->lock);
+			goto wait_to_die;
+		}
+
+		if (rq->active_balance) {
+			active_load_balance(rq, cpu);
+			rq->active_balance = 0;
+		}
+
+		head = &rq->migration_queue;
+
+		if (list_empty(head)) {
+			spin_unlock_irq(&rq->lock);
+			schedule();
+			set_current_state(TASK_INTERRUPTIBLE);
+			continue;
+		}
+		req = list_entry(head->next, struct migration_req, list);
+		list_del_init(head->next);
+
+		spin_unlock(&rq->lock);
+		__migrate_task(req->task, cpu, req->dest_cpu);
+		local_irq_enable();
+
+		complete(&req->done);
+	}
+	__set_current_state(TASK_RUNNING);
+	return 0;
+
+wait_to_die:
+	/* Wait for kthread_stop */
+	set_current_state(TASK_INTERRUPTIBLE);
+	while (!kthread_should_stop()) {
+		schedule();
+		set_current_state(TASK_INTERRUPTIBLE);
+	}
+	__set_current_state(TASK_RUNNING);
+	return 0;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+/* Figure out where task on dead CPU should go, use force if neccessary. */
+static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
+{
+	unsigned long flags;
+	cpumask_t mask;
+	struct rq *rq;
+	int dest_cpu;
+
+restart:
+	/* On same node? */
+	mask = node_to_cpumask(cpu_to_node(dead_cpu));
+	cpus_and(mask, mask, p->cpus_allowed);
+	dest_cpu = any_online_cpu(mask);
+
+	/* On any allowed CPU? */
+	if (dest_cpu == NR_CPUS)
+		dest_cpu = any_online_cpu(p->cpus_allowed);
+
+	/* No more Mr. Nice Guy. */
+	if (dest_cpu == NR_CPUS) {
+		rq = task_rq_lock(p, &flags);
+		cpus_setall(p->cpus_allowed);
+		dest_cpu = any_online_cpu(p->cpus_allowed);
+		task_rq_unlock(rq, &flags);
+
+		/*
+		 * Don't tell them about moving exiting tasks or
+		 * kernel threads (both mm NULL), since they never
+		 * leave kernel.
+		 */
+		if (p->mm && printk_ratelimit())
+			printk(KERN_INFO "process %d (%s) no "
+			       "longer affine to cpu%d\n",
+			       p->pid, p->comm, dead_cpu);
+	}
+	if (!__migrate_task(p, dead_cpu, dest_cpu))
+		goto restart;
+}
+
+/*
+ * While a dead CPU has no uninterruptible tasks queued at this point,
+ * it might still have a nonzero ->nr_uninterruptible counter, because
+ * for performance reasons the counter is not stricly tracking tasks to
+ * their home CPUs. So we just add the counter to another CPU's counter,
+ * to keep the global sum constant after CPU-down:
+ */
+static void migrate_nr_uninterruptible(struct rq *rq_src)
+{
+	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
+	unsigned long flags;
+
+	local_irq_save(flags);
+	double_rq_lock(rq_src, rq_dest);
+	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
+	rq_src->nr_uninterruptible = 0;
+	double_rq_unlock(rq_src, rq_dest);
+	local_irq_restore(flags);
+}
+
+/* Run through task list and migrate tasks from the dead cpu. */
+static void migrate_live_tasks(int src_cpu)
+{
+	struct task_struct *p, *t;
+
+	write_lock_irq(&tasklist_lock);
+
+	do_each_thread(t, p) {
+		if (p == current)
+			continue;
+
+		if (task_cpu(p) == src_cpu)
+			move_task_off_dead_cpu(src_cpu, p);
+	} while_each_thread(t, p);
+
+	write_unlock_irq(&tasklist_lock);
+}
+
+/* Schedules idle task to be the next runnable task on current CPU.
+ * It does so by boosting its priority to highest possible and adding it to
+ * the _front_ of the runqueue. Used by CPU offline code.
+ */
+void sched_idle_next(void)
+{
+	int this_cpu = smp_processor_id();
+	struct rq *rq = cpu_rq(this_cpu);
+	struct task_struct *p = rq->idle;
+	unsigned long flags;
+
+	/* cpu has to be offline */
+	BUG_ON(cpu_online(this_cpu));
+
+	/*
+	 * Strictly not necessary since rest of the CPUs are stopped by now
+	 * and interrupts disabled on the current cpu.
+	 */
+	spin_lock_irqsave(&rq->lock, flags);
+
+	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+
+	/* Add idle task to the _front_ of its priority queue: */
+	__activate_idle_task(p, rq);
+
+	spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+/*
+ * Ensures that the idle task is using init_mm right before its cpu goes
+ * offline.
+ */
+void idle_task_exit(void)
+{
+	struct mm_struct *mm = current->active_mm;
+
+	BUG_ON(cpu_online(smp_processor_id()));
+
+	if (mm != &init_mm)
+		switch_mm(mm, &init_mm, current);
+	mmdrop(mm);
+}
+
+static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
+{
+	struct rq *rq = cpu_rq(dead_cpu);
+
+	/* Must be exiting, otherwise would be on tasklist. */
+	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
+
+	/* Cannot have done final schedule yet: would have vanished. */
+	BUG_ON(p->flags & PF_DEAD);
+
+	get_task_struct(p);
+
+	/*
+	 * Drop lock around migration; if someone else moves it,
+	 * that's OK.  No task can be added to this CPU, so iteration is
+	 * fine.
+	 */
+	spin_unlock_irq(&rq->lock);
+	move_task_off_dead_cpu(dead_cpu, p);
+	spin_lock_irq(&rq->lock);
+
+	put_task_struct(p);
+}
+
+/* release_task() removes task from tasklist, so we won't find dead tasks. */
+static void migrate_dead_tasks(unsigned int dead_cpu)
+{
+	struct rq *rq = cpu_rq(dead_cpu);
+	unsigned int arr, i;
+
+	for (arr = 0; arr < 2; arr++) {
+		for (i = 0; i < MAX_PRIO; i++) {
+			struct list_head *list = &rq->queue[i];
+
+			while (!list_empty(list))
+				migrate_dead(dead_cpu, list_entry(list->next,
+					     struct task_struct, run_list));
+		}
+	}
+}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_SYSCTL)
+static struct ctl_table sd_ctl_dir[] = {
+	{1, "sched_domain", NULL, 0, 0755, NULL, },
+	{0,},
+};
+
+static struct ctl_table sd_ctl_root[] = {
+	{1, "kernel", NULL, 0, 0755, sd_ctl_dir, },
+	{0,},
+};
+
+static struct ctl_table *sd_alloc_ctl_entry(int n)
+{
+	struct ctl_table *entry =
+		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
+	BUG_ON(!entry);
+	memset(entry, 0, n * sizeof(struct ctl_table));
+	return entry;
+}
+
+static void set_table_entry(struct ctl_table *entry, int ctl_name,
+			const char *procname, void *data, int maxlen,
+			mode_t mode, proc_handler *proc_handler)
+{
+	entry->ctl_name = ctl_name;
+	entry->procname = procname;
+	entry->data = data;
+	entry->maxlen = maxlen;
+	entry->mode = mode;
+	entry->proc_handler = proc_handler;
+}
+
+static struct ctl_table *
+sd_alloc_ctl_domain_table(struct sched_domain *sd)
+{
+	struct ctl_table *table;
+	table = sd_alloc_ctl_entry(14);
+
+	set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
+		sizeof(long), 0644, proc_doulongvec_minmax);
+	set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
+		sizeof(long), 0644, proc_doulongvec_minmax);
+	set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[9], 10, "cache_hot_time", &sd->cache_hot_time,
+		sizeof(long long), 0644, proc_doulongvec_minmax);
+	set_table_entry(&table[10], 11, "cache_nice_tries", &sd->cache_nice_tries,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[11], 12, "per_cpu_gain", &sd->per_cpu_gain,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	set_table_entry(&table[12], 13, "flags", &sd->flags,
+		sizeof(int), 0644, proc_dointvec_minmax);
+	return table;
+}
+
+static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
+{
+	struct sched_domain *sd;
+	int domain_num = 0, i;
+	struct ctl_table *entry, *table;
+	char buf[32];
+	for_each_domain(cpu, sd)
+		domain_num++;
+	entry = table = sd_alloc_ctl_entry(domain_num + 1);
+
+	i = 0;
+	for_each_domain(cpu, sd) {
+		snprintf(buf, 32, "domain%d", i);
+		entry->ctl_name = i + 1;
+		entry->procname = kstrdup(buf, GFP_KERNEL);
+		entry->mode = 0755;
+		entry->child = sd_alloc_ctl_domain_table(sd);
+		entry++;
+		i++;
+	}
+	return table;
+}
+
+static struct ctl_table_header *sd_sysctl_header;
+static void init_sched_domain_sysctl(void)
+{
+	int i, cpu_num = num_online_cpus();
+	char buf[32];
+	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
+
+	sd_ctl_dir[0].child = entry;
+
+	for (i = 0; i < cpu_num; i++, entry++) {
+		snprintf(buf, 32, "cpu%d", i);
+		entry->ctl_name = i + 1;
+		entry->procname = kstrdup(buf, GFP_KERNEL);
+		entry->mode = 0755;
+		entry->child = sd_alloc_ctl_cpu_table(i);
+	}
+	sd_sysctl_header = register_sysctl_table(sd_ctl_root, 0);
+}
+#else
+static void init_sched_domain_sysctl(void)
+{
+}
+#endif
+
+/*
+ * migration_call - callback that gets triggered when a CPU is added.
+ * Here we can start up the necessary migration thread for the new CPU.
+ */
+static int __cpuinit
+migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
+{
+	struct task_struct *p;
+	int cpu = (long)hcpu;
+	unsigned long flags;
+	struct rq *rq;
+
+	switch (action) {
+	case CPU_UP_PREPARE:
+		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
+		if (IS_ERR(p))
+			return NOTIFY_BAD;
+		p->flags |= PF_NOFREEZE;
+		kthread_bind(p, cpu);
+		rq = task_rq_lock(p, &flags);
+		__setscheduler(p, SCHED_FIFO, MIGRATION_THREAD_PRIO);
+		task_rq_unlock(rq, &flags);
+		cpu_rq(cpu)->migration_thread = p;
+		break;
+
+	case CPU_ONLINE:
+		/* Strictly unneccessary, as first user will wake it. */
+		wake_up_process(cpu_rq(cpu)->migration_thread);
+		break;
+
+#ifdef CONFIG_HOTPLUG_CPU
+	case CPU_UP_CANCELED:
+		if (!cpu_rq(cpu)->migration_thread)
+			break;
+		/* Unbind it from offline cpu so it can run.  Fall thru. */
+		kthread_bind(cpu_rq(cpu)->migration_thread,
+			     any_online_cpu(cpu_online_map));
+		kthread_stop(cpu_rq(cpu)->migration_thread);
+		cpu_rq(cpu)->migration_thread = NULL;
+		break;
+
+	case CPU_DEAD:
+		migrate_live_tasks(cpu);
+		rq = cpu_rq(cpu);
+		kthread_stop(rq->migration_thread);
+		rq->migration_thread = NULL;
+		/* Idle task back to normal (off runqueue, low prio) */
+		rq = task_rq_lock(rq->idle, &flags);
+		deactivate_task(rq->idle, rq);
+		rq->idle->static_prio = MAX_PRIO;
+		__setscheduler(rq->idle, SCHED_NORMAL, 0);
+		migrate_dead_tasks(cpu);
+		task_rq_unlock(rq, &flags);
+		migrate_nr_uninterruptible(rq);
+		BUG_ON(rq->nr_running != 0);
+
+		/* No need to migrate the tasks: it was best-effort if
+		 * they didn't do lock_cpu_hotplug().  Just wake up
+		 * the requestors. */
+		spin_lock_irq(&rq->lock);
+		while (!list_empty(&rq->migration_queue)) {
+			struct migration_req *req;
+
+			req = list_entry(rq->migration_queue.next,
+					 struct migration_req, list);
+			list_del_init(&req->list);
+			complete(&req->done);
+		}
+		spin_unlock_irq(&rq->lock);
+		break;
+#endif
+	}
+	return NOTIFY_OK;
+}
+
+/* Register at highest priority so that task migration (migrate_all_tasks)
+ * happens before everything else.
+ */
+static struct notifier_block __cpuinitdata migration_notifier = {
+	.notifier_call = migration_call,
+	.priority = 10
+};
+
+int __init migration_init(void)
+{
+	void *cpu = (void *)(long)smp_processor_id();
+
+	/* Start one for the boot CPU: */
+	migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
+	migration_call(&migration_notifier, CPU_ONLINE, cpu);
+	register_cpu_notifier(&migration_notifier);
+
+	return 0;
+}
+#endif
+
+#ifdef CONFIG_SMP
+#undef SCHED_DOMAIN_DEBUG
+#ifdef SCHED_DOMAIN_DEBUG
+static void sched_domain_debug(struct sched_domain *sd, int cpu)
+{
+	int level = 0;
+
+	if (!sd) {
+		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
+		return;
+	}
+
+	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
+
+	do {
+		int i;
+		char str[NR_CPUS];
+		struct sched_group *group = sd->groups;
+		cpumask_t groupmask;
+
+		cpumask_scnprintf(str, NR_CPUS, sd->span);
+		cpus_clear(groupmask);
+
+		printk(KERN_DEBUG);
+		for (i = 0; i < level + 1; i++)
+			printk(" ");
+		printk("domain %d: ", level);
+
+		if (!(sd->flags & SD_LOAD_BALANCE)) {
+			printk("does not load-balance\n");
+			if (sd->parent)
+				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
+			break;
+		}
+
+		printk("span %s\n", str);
+
+		if (!cpu_isset(cpu, sd->span))
+			printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
+		if (!cpu_isset(cpu, group->cpumask))
+			printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
+
+		printk(KERN_DEBUG);
+		for (i = 0; i < level + 2; i++)
+			printk(" ");
+		printk("groups:");
+		do {
+			if (!group) {
+				printk("\n");
+				printk(KERN_ERR "ERROR: group is NULL\n");
+				break;
+			}
+
+			if (!group->cpu_power) {
+				printk("\n");
+				printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
+			}
+
+			if (!cpus_weight(group->cpumask)) {
+				printk("\n");
+				printk(KERN_ERR "ERROR: empty group\n");
+			}
+
+			if (cpus_intersects(groupmask, group->cpumask)) {
+				printk("\n");
+				printk(KERN_ERR "ERROR: repeated CPUs\n");
+			}
+
+			cpus_or(groupmask, groupmask, group->cpumask);
+
+			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
+			printk(" %s", str);
+
+			group = group->next;
+		} while (group != sd->groups);
+		printk("\n");
+
+		if (!cpus_equal(sd->span, groupmask))
+			printk(KERN_ERR "ERROR: groups don't span domain->span\n");
+
+		level++;
+		sd = sd->parent;
+
+		if (sd) {
+			if (!cpus_subset(groupmask, sd->span))
+				printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
+		}
+
+	} while (sd);
+}
+#else
+# define sched_domain_debug(sd, cpu) do { } while (0)
+#endif
+
+static int sd_degenerate(struct sched_domain *sd)
+{
+	if (cpus_weight(sd->span) == 1)
+		return 1;
+
+	/* Following flags need at least 2 groups */
+	if (sd->flags & (SD_LOAD_BALANCE |
+			 SD_BALANCE_NEWIDLE |
+			 SD_BALANCE_FORK |
+			 SD_BALANCE_EXEC)) {
+		if (sd->groups != sd->groups->next)
+			return 0;
+	}
+
+	/* Following flags don't use groups */
+	if (sd->flags & (SD_WAKE_IDLE |
+			 SD_WAKE_AFFINE |
+			 SD_WAKE_BALANCE))
+		return 0;
+
+	return 1;
+}
+
+static int
+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
+{
+	unsigned long cflags = sd->flags, pflags = parent->flags;
+
+	if (sd_degenerate(parent))
+		return 1;
+
+	if (!cpus_equal(sd->span, parent->span))
+		return 0;
+
+	/* Does parent contain flags not in child? */
+	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
+	if (cflags & SD_WAKE_AFFINE)
+		pflags &= ~SD_WAKE_BALANCE;
+	/* Flags needing groups don't count if only 1 group in parent */
+	if (parent->groups == parent->groups->next) {
+		pflags &= ~(SD_LOAD_BALANCE |
+				SD_BALANCE_NEWIDLE |
+				SD_BALANCE_FORK |
+				SD_BALANCE_EXEC);
+	}
+	if (~cflags & pflags)
+		return 0;
+
+	return 1;
+}
+
+/*
+ * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
+ * hold the hotplug lock.
+ */
+static void cpu_attach_domain(struct sched_domain *sd, int cpu)
+{
+	struct rq *rq = cpu_rq(cpu);
+	struct sched_domain *tmp;
+
+	/* Remove the sched domains which do not contribute to scheduling. */
+	for (tmp = sd; tmp; tmp = tmp->parent) {
+		struct sched_domain *parent = tmp->parent;
+		if (!parent)
+			break;
+		if (sd_parent_degenerate(tmp, parent))
+			tmp->parent = parent->parent;
+	}
+
+	if (sd && sd_degenerate(sd))
+		sd = sd->parent;
+
+	sched_domain_debug(sd, cpu);
+
+	rcu_assign_pointer(rq->sd, sd);
+}
+
+/* cpus with isolated domains */
+static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
+
+/* Setup the mask of cpus configured for isolated domains */
+static int __init isolated_cpu_setup(char *str)
+{
+	int ints[NR_CPUS], i;
+
+	str = get_options(str, ARRAY_SIZE(ints), ints);
+	cpus_clear(cpu_isolated_map);
+	for (i = 1; i <= ints[0]; i++)
+		if (ints[i] < NR_CPUS)
+			cpu_set(ints[i], cpu_isolated_map);
+	return 1;
+}
+
+__setup ("isolcpus=", isolated_cpu_setup);
+
+/*
+ * init_sched_build_groups takes an array of groups, the cpumask we wish
+ * to span, and a pointer to a function which identifies what group a CPU
+ * belongs to. The return value of group_fn must be a valid index into the
+ * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
+ * keep track of groups covered with a cpumask_t).
+ *
+ * init_sched_build_groups will build a circular linked list of the groups
+ * covered by the given span, and will set each group's ->cpumask correctly,
+ * and ->cpu_power to 0.
+ */
+static void
+init_sched_build_groups(struct sched_group groups[], cpumask_t span,
+			const cpumask_t *cpu_map,
+			int (*group_fn)(int cpu, const cpumask_t *cpu_map))
+{
+	struct sched_group *first = NULL, *last = NULL;
+	cpumask_t covered = CPU_MASK_NONE;
+	int i;
+
+	for_each_cpu_mask(i, span) {
+		int group = group_fn(i, cpu_map);
+		struct sched_group *sg = &groups[group];
+		int j;
+
+		if (cpu_isset(i, covered))
+			continue;
+
+		sg->cpumask = CPU_MASK_NONE;
+		sg->cpu_power = 0;
+
+		for_each_cpu_mask(j, span) {
+			if (group_fn(j, cpu_map) != group)
+				continue;
+
+			cpu_set(j, covered);
+			cpu_set(j, sg->cpumask);
+		}
+		if (!first)
+			first = sg;
+		if (last)
+			last->next = sg;
+		last = sg;
+	}
+	last->next = first;
+}
+
+#define SD_NODES_PER_DOMAIN 16
+
+/*
+ * Self-tuning task migration cost measurement between source and target CPUs.
+ *
+ * This is done by measuring the cost of manipulating buffers of varying
+ * sizes. For a given buffer-size here are the steps that are taken:
+ *
+ * 1) the source CPU reads+dirties a shared buffer
+ * 2) the target CPU reads+dirties the same shared buffer
+ *
+ * We measure how long they take, in the following 4 scenarios:
+ *
+ *  - source: CPU1, target: CPU2 | cost1
+ *  - source: CPU2, target: CPU1 | cost2
+ *  - source: CPU1, target: CPU1 | cost3
+ *  - source: CPU2, target: CPU2 | cost4
+ *
+ * We then calculate the cost3+cost4-cost1-cost2 difference - this is
+ * the cost of migration.
+ *
+ * We then start off from a small buffer-size and iterate up to larger
+ * buffer sizes, in 5% steps - measuring each buffer-size separately, and
+ * doing a maximum search for the cost. (The maximum cost for a migration
+ * normally occurs when the working set size is around the effective cache
+ * size.)
+ */
+#define SEARCH_SCOPE		2
+#define MIN_CACHE_SIZE		(64*1024U)
+#define DEFAULT_CACHE_SIZE	(5*1024*1024U)
+#define ITERATIONS		1
+#define SIZE_THRESH		130
+#define COST_THRESH		130
+
+/*
+ * The migration cost is a function of 'domain distance'. Domain
+ * distance is the number of steps a CPU has to iterate down its
+ * domain tree to share a domain with the other CPU. The farther
+ * two CPUs are from each other, the larger the distance gets.
+ *
+ * Note that we use the distance only to cache measurement results,
+ * the distance value is not used numerically otherwise. When two
+ * CPUs have the same distance it is assumed that the migration
+ * cost is the same. (this is a simplification but quite practical)
+ */
+#define MAX_DOMAIN_DISTANCE 32
+
+static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
+		{ [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
+/*
+ * Architectures may override the migration cost and thus avoid
+ * boot-time calibration. Unit is nanoseconds. Mostly useful for
+ * virtualized hardware:
+ */
+#ifdef CONFIG_DEFAULT_MIGRATION_COST
+			CONFIG_DEFAULT_MIGRATION_COST
+#else
+			-1LL
+#endif
+};
+
+/*
+ * Allow override of migration cost - in units of microseconds.
+ * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
+ * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
+ */
+static int __init migration_cost_setup(char *str)
+{
+	int ints[MAX_DOMAIN_DISTANCE+1], i;
+
+	str = get_options(str, ARRAY_SIZE(ints), ints);
+
+	printk("#ints: %d\n", ints[0]);
+	for (i = 1; i <= ints[0]; i++) {
+		migration_cost[i-1] = (unsigned long long)ints[i]*1000;
+		printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
+	}
+	return 1;
+}
+
+__setup ("migration_cost=", migration_cost_setup);
+
+/*
+ * Global multiplier (divisor) for migration-cutoff values,
+ * in percentiles. E.g. use a value of 150 to get 1.5 times
+ * longer cache-hot cutoff times.
+ *
+ * (We scale it from 100 to 128 to long long handling easier.)
+ */
+
+#define MIGRATION_FACTOR_SCALE 128
+
+static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
+
+static int __init setup_migration_factor(char *str)
+{
+	get_option(&str, &migration_factor);
+	migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
+	return 1;
+}
+
+__setup("migration_factor=", setup_migration_factor);
+
+/*
+ * Estimated distance of two CPUs, measured via the number of domains
+ * we have to pass for the two CPUs to be in the same span:
+ */
+static unsigned long domain_distance(int cpu1, int cpu2)
+{
+	unsigned long distance = 0;
+	struct sched_domain *sd;
+
+	for_each_domain(cpu1, sd) {
+		WARN_ON(!cpu_isset(cpu1, sd->span));
+		if (cpu_isset(cpu2, sd->span))
+			return distance;
+		distance++;
+	}
+	if (distance >= MAX_DOMAIN_DISTANCE) {
+		WARN_ON(1);
+		distance = MAX_DOMAIN_DISTANCE-1;
+	}
+
+	return distance;
+}
+
+static unsigned int migration_debug;
+
+static int __init setup_migration_debug(char *str)
+{
+	get_option(&str, &migration_debug);
+	return 1;
+}
+
+__setup("migration_debug=", setup_migration_debug);
+
+/*
+ * Maximum cache-size that the scheduler should try to measure.
+ * Architectures with larger caches should tune this up during
+ * bootup. Gets used in the domain-setup code (i.e. during SMP
+ * bootup).
+ */
+unsigned int max_cache_size;
+
+static int __init setup_max_cache_size(char *str)
+{
+	get_option(&str, &max_cache_size);
+	return 1;
+}
+
+__setup("max_cache_size=", setup_max_cache_size);
+
+/*
+ * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
+ * is the operation that is timed, so we try to generate unpredictable
+ * cachemisses that still end up filling the L2 cache:
+ */
+static void touch_cache(void *__cache, unsigned long __size)
+{
+	unsigned long size = __size/sizeof(long), chunk1 = size/3,
+			chunk2 = 2*size/3;
+	unsigned long *cache = __cache;
+	int i;
+
+	for (i = 0; i < size/6; i += 8) {
+		switch (i % 6) {
+			case 0: cache[i]++;
+			case 1: cache[size-1-i]++;
+			case 2: cache[chunk1-i]++;
+			case 3: cache[chunk1+i]++;
+			case 4: cache[chunk2-i]++;
+			case 5: cache[chunk2+i]++;
+		}
+	}
+}
+
+/*
+ * Measure the cache-cost of one task migration. Returns in units of nsec.
+ */
+static unsigned long long
+measure_one(void *cache, unsigned long size, int source, int target)
+{
+	cpumask_t mask, saved_mask;
+	unsigned long long t0, t1, t2, t3, cost;
+
+	saved_mask = current->cpus_allowed;
+
+	/*
+	 * Flush source caches to RAM and invalidate them:
+	 */
+	sched_cacheflush();
+
+	/*
+	 * Migrate to the source CPU:
+	 */
+	mask = cpumask_of_cpu(source);
+	set_cpus_allowed(current, mask);
+	WARN_ON(smp_processor_id() != source);
+
+	/*
+	 * Dirty the working set:
+	 */
+	t0 = sched_clock();
+	touch_cache(cache, size);
+	t1 = sched_clock();
+
+	/*
+	 * Migrate to the target CPU, dirty the L2 cache and access
+	 * the shared buffer. (which represents the working set
+	 * of a migrated task.)
+	 */
+	mask = cpumask_of_cpu(target);
+	set_cpus_allowed(current, mask);
+	WARN_ON(smp_processor_id() != target);
+
+	t2 = sched_clock();
+	touch_cache(cache, size);
+	t3 = sched_clock();
+
+	cost = t1-t0 + t3-t2;
+
+	if (migration_debug >= 2)
+		printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
+			source, target, t1-t0, t1-t0, t3-t2, cost);
+	/*
+	 * Flush target caches to RAM and invalidate them:
+	 */
+	sched_cacheflush();
+
+	set_cpus_allowed(current, saved_mask);
+
+	return cost;
+}
+
+/*
+ * Measure a series of task migrations and return the average
+ * result. Since this code runs early during bootup the system
+ * is 'undisturbed' and the average latency makes sense.
+ *
+ * The algorithm in essence auto-detects the relevant cache-size,
+ * so it will properly detect different cachesizes for different
+ * cache-hierarchies, depending on how the CPUs are connected.
+ *
+ * Architectures can prime the upper limit of the search range via
+ * max_cache_size, otherwise the search range defaults to 20MB...64K.
+ */
+static unsigned long long
+measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
+{
+	unsigned long long cost1, cost2;
+	int i;
+
+	/*
+	 * Measure the migration cost of 'size' bytes, over an
+	 * average of 10 runs:
+	 *
+	 * (We perturb the cache size by a small (0..4k)
+	 *  value to compensate size/alignment related artifacts.
+	 *  We also subtract the cost of the operation done on
+	 *  the same CPU.)
+	 */
+	cost1 = 0;
+
+	/*
+	 * dry run, to make sure we start off cache-cold on cpu1,
+	 * and to get any vmalloc pagefaults in advance:
+	 */
+	measure_one(cache, size, cpu1, cpu2);
+	for (i = 0; i < ITERATIONS; i++)
+		cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
+
+	measure_one(cache, size, cpu2, cpu1);
+	for (i = 0; i < ITERATIONS; i++)
+		cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
+
+	/*
+	 * (We measure the non-migrating [cached] cost on both
+	 *  cpu1 and cpu2, to handle CPUs with different speeds)
+	 */
+	cost2 = 0;
+
+	measure_one(cache, size, cpu1, cpu1);
+	for (i = 0; i < ITERATIONS; i++)
+		cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
+
+	measure_one(cache, size, cpu2, cpu2);
+	for (i = 0; i < ITERATIONS; i++)
+		cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
+
+	/*
+	 * Get the per-iteration migration cost:
+	 */
+	do_div(cost1, 2*ITERATIONS);
+	do_div(cost2, 2*ITERATIONS);
+
+	return cost1 - cost2;
+}
+
+static unsigned long long measure_migration_cost(int cpu1, int cpu2)
+{
+	unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
+	unsigned int max_size, size, size_found = 0;
+	long long cost = 0, prev_cost;
+	void *cache;
+
+	/*
+	 * Search from max_cache_size*5 down to 64K - the real relevant
+	 * cachesize has to lie somewhere inbetween.
+	 */
+	if (max_cache_size) {
+		max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
+		size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
+	} else {
+		/*
+		 * Since we have no estimation about the relevant
+		 * search range
+		 */
+		max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
+		size = MIN_CACHE_SIZE;
+	}
+
+	if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
+		printk("cpu %d and %d not both online!\n", cpu1, cpu2);
+		return 0;
+	}
+
+	/*
+	 * Allocate the working set:
+	 */
+	cache = vmalloc(max_size);
+	if (!cache) {
+		printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
+		return 1000000; /* return 1 msec on very small boxen */
+	}
+
+	while (size <= max_size) {
+		prev_cost = cost;
+		cost = measure_cost(cpu1, cpu2, cache, size);
+
+		/*
+		 * Update the max:
+		 */
+		if (cost > 0) {
+			if (max_cost < cost) {
+				max_cost = cost;
+				size_found = size;
+			}
+		}
+		/*
+		 * Calculate average fluctuation, we use this to prevent
+		 * noise from triggering an early break out of the loop:
+		 */
+		fluct = abs(cost - prev_cost);
+		avg_fluct = (avg_fluct + fluct)/2;
+
+		if (migration_debug)
+			printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
+				cpu1, cpu2, size,
+				(long)cost / 1000000,
+				((long)cost / 100000) % 10,
+				(long)max_cost / 1000000,
+				((long)max_cost / 100000) % 10,
+				domain_distance(cpu1, cpu2),
+				cost, avg_fluct);
+
+		/*
+		 * If we iterated at least 20% past the previous maximum,
+		 * and the cost has dropped by more than 20% already,
+		 * (taking fluctuations into account) then we assume to
+		 * have found the maximum and break out of the loop early:
+		 */
+		if (size_found && (size*100 > size_found*SIZE_THRESH))
+			if (cost+avg_fluct <= 0 ||
+				max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
+
+				if (migration_debug)
+					printk("-> found max.\n");
+				break;
+			}
+		/*
+		 * Increase the cachesize in 10% steps:
+		 */
+		size = size * 10 / 9;
+	}
+
+	if (migration_debug)
+		printk("[%d][%d] working set size found: %d, cost: %Ld\n",
+			cpu1, cpu2, size_found, max_cost);
+
+	vfree(cache);
+
+	/*
+	 * A task is considered 'cache cold' if at least 2 times
+	 * the worst-case cost of migration has passed.
+	 *
+	 * (this limit is only listened to if the load-balancing
+	 * situation is 'nice' - if there is a large imbalance we
+	 * ignore it for the sake of CPU utilization and
+	 * processing fairness.)
+	 */
+	return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
+}
+
+static void calibrate_migration_costs(const cpumask_t *cpu_map)
+{
+	int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
+	unsigned long j0, j1, distance, max_distance = 0;
+	struct sched_domain *sd;
+
+	j0 = jiffies;
+
+	/*
+	 * First pass - calculate the cacheflush times:
+	 */
+	for_each_cpu_mask(cpu1, *cpu_map) {
+		for_each_cpu_mask(cpu2, *cpu_map) {
+			if (cpu1 == cpu2)
+				continue;
+			distance = domain_distance(cpu1, cpu2);
+			max_distance = max(max_distance, distance);
+			/*
+			 * No result cached yet?
+			 */
+			if (migration_cost[distance] == -1LL)
+				migration_cost[distance] =
+					measure_migration_cost(cpu1, cpu2);
+		}
+	}
+	/*
+	 * Second pass - update the sched domain hierarchy with
+	 * the new cache-hot-time estimations:
+	 */
+	for_each_cpu_mask(cpu, *cpu_map) {
+		distance = 0;
+		for_each_domain(cpu, sd) {
+			sd->cache_hot_time = migration_cost[distance];
+			distance++;
+		}
+	}
+	/*
+	 * Print the matrix:
+	 */
+	if (migration_debug)
+		printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
+			max_cache_size,
+#ifdef CONFIG_X86
+			cpu_khz/1000
+#else
+			-1
+#endif
+		);
+	if (system_state == SYSTEM_BOOTING) {
+		if (num_online_cpus() > 1) {
+			printk("migration_cost=");
+			for (distance = 0; distance <= max_distance; distance++) {
+				if (distance)
+					printk(",");
+				printk("%ld", (long)migration_cost[distance] / 1000);
+			}
+			printk("\n");
+		}
+	}
+	j1 = jiffies;
+	if (migration_debug)
+		printk("migration: %ld seconds\n", (j1-j0)/HZ);
+
+	/*
+	 * Move back to the original CPU. NUMA-Q gets confused
+	 * if we migrate to another quad during bootup.
+	 */
+	if (raw_smp_processor_id() != orig_cpu) {
+		cpumask_t mask = cpumask_of_cpu(orig_cpu),
+			saved_mask = current->cpus_allowed;
+
+		set_cpus_allowed(current, mask);
+		set_cpus_allowed(current, saved_mask);
+	}
+}
+
+#ifdef CONFIG_NUMA
+
+/**
+ * find_next_best_node - find the next node to include in a sched_domain
+ * @node: node whose sched_domain we're building
+ * @used_nodes: nodes already in the sched_domain
+ *
+ * Find the next node to include in a given scheduling domain.  Simply
+ * finds the closest node not already in the @used_nodes map.
+ *
+ * Should use nodemask_t.
+ */
+static int find_next_best_node(int node, unsigned long *used_nodes)
+{
+	int i, n, val, min_val, best_node = 0;
+
+	min_val = INT_MAX;
+
+	for (i = 0; i < MAX_NUMNODES; i++) {
+		/* Start at @node */
+		n = (node + i) % MAX_NUMNODES;
+
+		if (!nr_cpus_node(n))
+			continue;
+
+		/* Skip already used nodes */
+		if (test_bit(n, used_nodes))
+			continue;
+
+		/* Simple min distance search */
+		val = node_distance(node, n);
+
+		if (val < min_val) {
+			min_val = val;
+			best_node = n;
+		}
+	}
+
+	set_bit(best_node, used_nodes);
+	return best_node;
+}
+
+/**
+ * sched_domain_node_span - get a cpumask for a node's sched_domain
+ * @node: node whose cpumask we're constructing
+ * @size: number of nodes to include in this span
+ *
+ * Given a node, construct a good cpumask for its sched_domain to span.  It
+ * should be one that prevents unnecessary balancing, but also spreads tasks
+ * out optimally.
+ */
+static cpumask_t sched_domain_node_span(int node)
+{
+	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
+	cpumask_t span, nodemask;
+	int i;
+
+	cpus_clear(span);
+	bitmap_zero(used_nodes, MAX_NUMNODES);
+
+	nodemask = node_to_cpumask(node);
+	cpus_or(span, span, nodemask);
+	set_bit(node, used_nodes);
+
+	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
+		int next_node = find_next_best_node(node, used_nodes);
+
+		nodemask = node_to_cpumask(next_node);
+		cpus_or(span, span, nodemask);
+	}
+
+	return span;
+}
+#endif
+
+int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
+
+/*
+ * SMT sched-domains:
+ */
+#ifdef CONFIG_SCHED_SMT
+static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
+static struct sched_group sched_group_cpus[NR_CPUS];
+
+static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map)
+{
+	return cpu;
+}
+#endif
+
+/*
+ * multi-core sched-domains:
+ */
+#ifdef CONFIG_SCHED_MC
+static DEFINE_PER_CPU(struct sched_domain, core_domains);
+static struct sched_group sched_group_core[NR_CPUS];
+#endif
+
+#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
+static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
+{
+	cpumask_t mask = cpu_sibling_map[cpu];
+	cpus_and(mask, mask, *cpu_map);
+	return first_cpu(mask);
+}
+#elif defined(CONFIG_SCHED_MC)
+static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
+{
+	return cpu;
+}
+#endif
+
+static DEFINE_PER_CPU(struct sched_domain, phys_domains);
+static struct sched_group sched_group_phys[NR_CPUS];
+
+static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map)
+{
+#ifdef CONFIG_SCHED_MC
+	cpumask_t mask = cpu_coregroup_map(cpu);
+	cpus_and(mask, mask, *cpu_map);
+	return first_cpu(mask);
+#elif defined(CONFIG_SCHED_SMT)
+	cpumask_t mask = cpu_sibling_map[cpu];
+	cpus_and(mask, mask, *cpu_map);
+	return first_cpu(mask);
+#else
+	return cpu;
+#endif
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * The init_sched_build_groups can't handle what we want to do with node
+ * groups, so roll our own. Now each node has its own list of groups which
+ * gets dynamically allocated.
+ */
+static DEFINE_PER_CPU(struct sched_domain, node_domains);
+static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
+
+static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
+static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
+
+static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map)
+{
+	return cpu_to_node(cpu);
+}
+static void init_numa_sched_groups_power(struct sched_group *group_head)
+{
+	struct sched_group *sg = group_head;
+	int j;
+
+	if (!sg)
+		return;
+next_sg:
+	for_each_cpu_mask(j, sg->cpumask) {
+		struct sched_domain *sd;
+
+		sd = &per_cpu(phys_domains, j);
+		if (j != first_cpu(sd->groups->cpumask)) {
+			/*
+			 * Only add "power" once for each
+			 * physical package.
+			 */
+			continue;
+		}
+
+		sg->cpu_power += sd->groups->cpu_power;
+	}
+	sg = sg->next;
+	if (sg != group_head)
+		goto next_sg;
+}
+#endif
+
+#ifdef CONFIG_NUMA
+/* Free memory allocated for various sched_group structures */
+static void free_sched_groups(const cpumask_t *cpu_map)
+{
+	int cpu, i;
+
+	for_each_cpu_mask(cpu, *cpu_map) {
+		struct sched_group *sched_group_allnodes
+			= sched_group_allnodes_bycpu[cpu];
+		struct sched_group **sched_group_nodes
+			= sched_group_nodes_bycpu[cpu];
+
+		if (sched_group_allnodes) {
+			kfree(sched_group_allnodes);
+			sched_group_allnodes_bycpu[cpu] = NULL;
+		}
+
+		if (!sched_group_nodes)
+			continue;
+
+		for (i = 0; i < MAX_NUMNODES; i++) {
+			cpumask_t nodemask = node_to_cpumask(i);
+			struct sched_group *oldsg, *sg = sched_group_nodes[i];
+
+			cpus_and(nodemask, nodemask, *cpu_map);
+			if (cpus_empty(nodemask))
+				continue;
+
+			if (sg == NULL)
+				continue;
+			sg = sg->next;
+next_sg:
+			oldsg = sg;
+			sg = sg->next;
+			kfree(oldsg);
+			if (oldsg != sched_group_nodes[i])
+				goto next_sg;
+		}
+		kfree(sched_group_nodes);
+		sched_group_nodes_bycpu[cpu] = NULL;
+	}
+}
+#else
+static void free_sched_groups(const cpumask_t *cpu_map)
+{
+}
+#endif
+
+/*
+ * Build sched domains for a given set of cpus and attach the sched domains
+ * to the individual cpus
+ */
+static int build_sched_domains(const cpumask_t *cpu_map)
+{
+	int i;
+#ifdef CONFIG_NUMA
+	struct sched_group **sched_group_nodes = NULL;
+	struct sched_group *sched_group_allnodes = NULL;
+
+	/*
+	 * Allocate the per-node list of sched groups
+	 */
+	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
+					   GFP_KERNEL);
+	if (!sched_group_nodes) {
+		printk(KERN_WARNING "Can not alloc sched group node list\n");
+		return -ENOMEM;
+	}
+	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
+#endif
+
+	/*
+	 * Set up domains for cpus specified by the cpu_map.
+	 */
+	for_each_cpu_mask(i, *cpu_map) {
+		int group;
+		struct sched_domain *sd = NULL, *p;
+		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
+
+		cpus_and(nodemask, nodemask, *cpu_map);
+
+#ifdef CONFIG_NUMA
+		if (cpus_weight(*cpu_map)
+				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
+			if (!sched_group_allnodes) {
+				sched_group_allnodes
+					= kmalloc(sizeof(struct sched_group)
+							* MAX_NUMNODES,
+						  GFP_KERNEL);
+				if (!sched_group_allnodes) {
+					printk(KERN_WARNING
+					"Can not alloc allnodes sched group\n");
+					goto error;
+				}
+				sched_group_allnodes_bycpu[i]
+						= sched_group_allnodes;
+			}
+			sd = &per_cpu(allnodes_domains, i);
+			*sd = SD_ALLNODES_INIT;
+			sd->span = *cpu_map;
+			group = cpu_to_allnodes_group(i, cpu_map);
+			sd->groups = &sched_group_allnodes[group];
+			p = sd;
+		} else
+			p = NULL;
+
+		sd = &per_cpu(node_domains, i);
+		*sd = SD_NODE_INIT;
+		sd->span = sched_domain_node_span(cpu_to_node(i));
+		sd->parent = p;
+		cpus_and(sd->span, sd->span, *cpu_map);
+#endif
+
+		p = sd;
+		sd = &per_cpu(phys_domains, i);
+		group = cpu_to_phys_group(i, cpu_map);
+		*sd = SD_CPU_INIT;
+		sd->span = nodemask;
+		sd->parent = p;
+		sd->groups = &sched_group_phys[group];
+
+#ifdef CONFIG_SCHED_MC
+		p = sd;
+		sd = &per_cpu(core_domains, i);
+		group = cpu_to_core_group(i, cpu_map);
+		*sd = SD_MC_INIT;
+		sd->span = cpu_coregroup_map(i);
+		cpus_and(sd->span, sd->span, *cpu_map);
+		sd->parent = p;
+		sd->groups = &sched_group_core[group];
+#endif
+
+#ifdef CONFIG_SCHED_SMT
+		p = sd;
+		sd = &per_cpu(cpu_domains, i);
+		group = cpu_to_cpu_group(i, cpu_map);
+		*sd = SD_SIBLING_INIT;
+		sd->span = cpu_sibling_map[i];
+		cpus_and(sd->span, sd->span, *cpu_map);
+		sd->parent = p;
+		sd->groups = &sched_group_cpus[group];
+#endif
+	}
+
+#ifdef CONFIG_SCHED_SMT
+	/* Set up CPU (sibling) groups */
+	for_each_cpu_mask(i, *cpu_map) {
+		cpumask_t this_sibling_map = cpu_sibling_map[i];
+		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
+		if (i != first_cpu(this_sibling_map))
+			continue;
+
+		init_sched_build_groups(sched_group_cpus, this_sibling_map,
+					cpu_map, &cpu_to_cpu_group);
+	}
+#endif
+
+#ifdef CONFIG_SCHED_MC
+	/* Set up multi-core groups */
+	for_each_cpu_mask(i, *cpu_map) {
+		cpumask_t this_core_map = cpu_coregroup_map(i);
+		cpus_and(this_core_map, this_core_map, *cpu_map);
+		if (i != first_cpu(this_core_map))
+			continue;
+		init_sched_build_groups(sched_group_core, this_core_map,
+					cpu_map, &cpu_to_core_group);
+	}
+#endif
+
+
+	/* Set up physical groups */
+	for (i = 0; i < MAX_NUMNODES; i++) {
+		cpumask_t nodemask = node_to_cpumask(i);
+
+		cpus_and(nodemask, nodemask, *cpu_map);
+		if (cpus_empty(nodemask))
+			continue;
+
+		init_sched_build_groups(sched_group_phys, nodemask,
+					cpu_map, &cpu_to_phys_group);
+	}
+
+#ifdef CONFIG_NUMA
+	/* Set up node groups */
+	if (sched_group_allnodes)
+		init_sched_build_groups(sched_group_allnodes, *cpu_map,
+					cpu_map, &cpu_to_allnodes_group);
+
+	for (i = 0; i < MAX_NUMNODES; i++) {
+		/* Set up node groups */
+		struct sched_group *sg, *prev;
+		cpumask_t nodemask = node_to_cpumask(i);
+		cpumask_t domainspan;
+		cpumask_t covered = CPU_MASK_NONE;
+		int j;
+
+		cpus_and(nodemask, nodemask, *cpu_map);
+		if (cpus_empty(nodemask)) {
+			sched_group_nodes[i] = NULL;
+			continue;
+		}
+
+		domainspan = sched_domain_node_span(i);
+		cpus_and(domainspan, domainspan, *cpu_map);
+
+		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
+		if (!sg) {
+			printk(KERN_WARNING "Can not alloc domain group for "
+				"node %d\n", i);
+			goto error;
+		}
+		sched_group_nodes[i] = sg;
+		for_each_cpu_mask(j, nodemask) {
+			struct sched_domain *sd;
+			sd = &per_cpu(node_domains, j);
+			sd->groups = sg;
+		}
+		sg->cpu_power = 0;
+		sg->cpumask = nodemask;
+		sg->next = sg;
+		cpus_or(covered, covered, nodemask);
+		prev = sg;
+
+		for (j = 0; j < MAX_NUMNODES; j++) {
+			cpumask_t tmp, notcovered;
+			int n = (i + j) % MAX_NUMNODES;
+
+			cpus_complement(notcovered, covered);
+			cpus_and(tmp, notcovered, *cpu_map);
+			cpus_and(tmp, tmp, domainspan);
+			if (cpus_empty(tmp))
+				break;
+
+			nodemask = node_to_cpumask(n);
+			cpus_and(tmp, tmp, nodemask);
+			if (cpus_empty(tmp))
+				continue;
+
+			sg = kmalloc_node(sizeof(struct sched_group),
+					  GFP_KERNEL, i);
+			if (!sg) {
+				printk(KERN_WARNING
+				"Can not alloc domain group for node %d\n", j);
+				goto error;
+			}
+			sg->cpu_power = 0;
+			sg->cpumask = tmp;
+			sg->next = prev->next;
+			cpus_or(covered, covered, tmp);
+			prev->next = sg;
+			prev = sg;
+		}
+	}
+#endif
+
+	/* Calculate CPU power for physical packages and nodes */
+#ifdef CONFIG_SCHED_SMT
+	for_each_cpu_mask(i, *cpu_map) {
+		struct sched_domain *sd;
+		sd = &per_cpu(cpu_domains, i);
+		sd->groups->cpu_power = SCHED_LOAD_SCALE;
+	}
+#endif
+#ifdef CONFIG_SCHED_MC
+	for_each_cpu_mask(i, *cpu_map) {
+		int power;
+		struct sched_domain *sd;
+		sd = &per_cpu(core_domains, i);
+		if (sched_smt_power_savings)
+			power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
+		else
+			power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
+					    * SCHED_LOAD_SCALE / 10;
+		sd->groups->cpu_power = power;
+	}
+#endif
+
+	for_each_cpu_mask(i, *cpu_map) {
+		struct sched_domain *sd;
+#ifdef CONFIG_SCHED_MC
+		sd = &per_cpu(phys_domains, i);
+		if (i != first_cpu(sd->groups->cpumask))
+			continue;
+
+		sd->groups->cpu_power = 0;
+		if (sched_mc_power_savings || sched_smt_power_savings) {
+			int j;
+
+ 			for_each_cpu_mask(j, sd->groups->cpumask) {
+				struct sched_domain *sd1;
+ 				sd1 = &per_cpu(core_domains, j);
+ 				/*
+ 			 	 * for each core we will add once
+ 				 * to the group in physical domain
+ 			 	 */
+	 			if (j != first_cpu(sd1->groups->cpumask))
+ 					continue;
+
+ 				if (sched_smt_power_savings)
+ 					sd->groups->cpu_power += sd1->groups->cpu_power;
+ 				else
+ 					sd->groups->cpu_power += SCHED_LOAD_SCALE;
+ 			}
+ 		} else
+ 			/*
+ 			 * This has to be < 2 * SCHED_LOAD_SCALE
+ 			 * Lets keep it SCHED_LOAD_SCALE, so that
+ 			 * while calculating NUMA group's cpu_power
+ 			 * we can simply do
+ 			 *  numa_group->cpu_power += phys_group->cpu_power;
+ 			 *
+ 			 * See "only add power once for each physical pkg"
+ 			 * comment below
+ 			 */
+ 			sd->groups->cpu_power = SCHED_LOAD_SCALE;
+#else
+		int power;
+		sd = &per_cpu(phys_domains, i);
+		if (sched_smt_power_savings)
+			power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
+		else
+			power = SCHED_LOAD_SCALE;
+		sd->groups->cpu_power = power;
+#endif
+	}
+
+#ifdef CONFIG_NUMA
+	for (i = 0; i < MAX_NUMNODES; i++)
+		init_numa_sched_groups_power(sched_group_nodes[i]);
+
+	if (sched_group_allnodes) {
+		int group = cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map);
+		struct sched_group *sg = &sched_group_allnodes[group];
+
+		init_numa_sched_groups_power(sg);
+	}
+#endif
+
+	/* Attach the domains */
+	for_each_cpu_mask(i, *cpu_map) {
+		struct sched_domain *sd;
+#ifdef CONFIG_SCHED_SMT
+		sd = &per_cpu(cpu_domains, i);
+#elif defined(CONFIG_SCHED_MC)
+		sd = &per_cpu(core_domains, i);
+#else
+		sd = &per_cpu(phys_domains, i);
+#endif
+		cpu_attach_domain(sd, i);
+	}
+	/*
+	 * Tune cache-hot values:
+	 */
+	calibrate_migration_costs(cpu_map);
+
+	return 0;
+
+#ifdef CONFIG_NUMA
+error:
+	free_sched_groups(cpu_map);
+	return -ENOMEM;
+#endif
+}
+/*
+ * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
+ */
+static int arch_init_sched_domains(const cpumask_t *cpu_map)
+{
+	cpumask_t cpu_default_map;
+	int err;
+
+	/*
+	 * Setup mask for cpus without special case scheduling requirements.
+	 * For now this just excludes isolated cpus, but could be used to
+	 * exclude other special cases in the future.
+	 */
+	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
+
+	err = build_sched_domains(&cpu_default_map);
+
+	return err;
+}
+
+static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
+{
+	free_sched_groups(cpu_map);
+}
+
+/*
+ * Detach sched domains from a group of cpus specified in cpu_map
+ * These cpus will now be attached to the NULL domain
+ */
+static void detach_destroy_domains(const cpumask_t *cpu_map)
+{
+	int i;
+
+	for_each_cpu_mask(i, *cpu_map)
+		cpu_attach_domain(NULL, i);
+	synchronize_sched();
+	arch_destroy_sched_domains(cpu_map);
+}
+
+/*
+ * Partition sched domains as specified by the cpumasks below.
+ * This attaches all cpus from the cpumasks to the NULL domain,
+ * waits for a RCU quiescent period, recalculates sched
+ * domain information and then attaches them back to the
+ * correct sched domains
+ * Call with hotplug lock held
+ */
+int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
+{
+	cpumask_t change_map;
+	int err = 0;
+
+	cpus_and(*partition1, *partition1, cpu_online_map);
+	cpus_and(*partition2, *partition2, cpu_online_map);
+	cpus_or(change_map, *partition1, *partition2);
+
+	/* Detach sched domains from all of the affected cpus */
+	detach_destroy_domains(&change_map);
+	if (!cpus_empty(*partition1))
+		err = build_sched_domains(partition1);
+	if (!err && !cpus_empty(*partition2))
+		err = build_sched_domains(partition2);
+
+	return err;
+}
+
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
+int arch_reinit_sched_domains(void)
+{
+	int err;
+
+	lock_cpu_hotplug();
+	detach_destroy_domains(&cpu_online_map);
+	err = arch_init_sched_domains(&cpu_online_map);
+	unlock_cpu_hotplug();
+
+	return err;
+}
+
+static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
+{
+	int ret;
+
+	if (buf[0] != '0' && buf[0] != '1')
+		return -EINVAL;
+
+	if (smt)
+		sched_smt_power_savings = (buf[0] == '1');
+	else
+		sched_mc_power_savings = (buf[0] == '1');
+
+	ret = arch_reinit_sched_domains();
+
+	return ret ? ret : count;
+}
+
+int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
+{
+	int err = 0;
+
+#ifdef CONFIG_SCHED_SMT
+	if (smt_capable())
+		err = sysfs_create_file(&cls->kset.kobj,
+					&attr_sched_smt_power_savings.attr);
+#endif
+#ifdef CONFIG_SCHED_MC
+	if (!err && mc_capable())
+		err = sysfs_create_file(&cls->kset.kobj,
+					&attr_sched_mc_power_savings.attr);
+#endif
+	return err;
+}
+#endif
+
+#ifdef CONFIG_SCHED_MC
+static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
+{
+	return sprintf(page, "%u\n", sched_mc_power_savings);
+}
+static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
+					    const char *buf, size_t count)
+{
+	return sched_power_savings_store(buf, count, 0);
+}
+SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
+	    sched_mc_power_savings_store);
+#endif
+
+#ifdef CONFIG_SCHED_SMT
+static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
+{
+	return sprintf(page, "%u\n", sched_smt_power_savings);
+}
+static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
+					     const char *buf, size_t count)
+{
+	return sched_power_savings_store(buf, count, 1);
+}
+SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
+	    sched_smt_power_savings_store);
+#endif
+
+
+#ifdef CONFIG_HOTPLUG_CPU
+/*
+ * Force a reinitialization of the sched domains hierarchy.  The domains
+ * and groups cannot be updated in place without racing with the balancing
+ * code, so we temporarily attach all running cpus to the NULL domain
+ * which will prevent rebalancing while the sched domains are recalculated.
+ */
+static int update_sched_domains(struct notifier_block *nfb,
+				unsigned long action, void *hcpu)
+{
+	switch (action) {
+	case CPU_UP_PREPARE:
+	case CPU_DOWN_PREPARE:
+		detach_destroy_domains(&cpu_online_map);
+		return NOTIFY_OK;
+
+	case CPU_UP_CANCELED:
+	case CPU_DOWN_FAILED:
+	case CPU_ONLINE:
+	case CPU_DEAD:
+		/*
+		 * Fall through and re-initialise the domains.
+		 */
+		break;
+	default:
+		return NOTIFY_DONE;
+	}
+
+	/* The hotplug lock is already held by cpu_up/cpu_down */
+	arch_init_sched_domains(&cpu_online_map);
+
+	return NOTIFY_OK;
+}
+#endif
+
+void __init sched_init_smp(void)
+{
+	cpumask_t non_isolated_cpus;
+
+	lock_cpu_hotplug();
+	arch_init_sched_domains(&cpu_online_map);
+	cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
+	if (cpus_empty(non_isolated_cpus))
+		cpu_set(smp_processor_id(), non_isolated_cpus);
+	unlock_cpu_hotplug();
+	/* XXX: Theoretical race here - CPU may be hotplugged now */
+	hotcpu_notifier(update_sched_domains, 0);
+
+	init_sched_domain_sysctl();
+
+	/* Move init over to a non-isolated CPU */
+	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
+		BUG();
+}
+#else
+void __init sched_init_smp(void)
+{
+}
+#endif /* CONFIG_SMP */
+
+int in_sched_functions(unsigned long addr)
+{
+	/* Linker adds these: start and end of __sched functions */
+	extern char __sched_text_start[], __sched_text_end[];
+
+	return in_lock_functions(addr) ||
+		(addr >= (unsigned long)__sched_text_start
+		&& addr < (unsigned long)__sched_text_end);
+}
+
+void __init sched_init(void)
+{
+	int i;
+
+	for_each_possible_cpu(i) {
+		struct rq *rq;
+		int j;
+
+		rq = cpu_rq(i);
+		spin_lock_init(&rq->lock);
+		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
+		rq->nr_running = rq->cache_ticks = rq->preempted =
+			rq->iso_ticks = 0;
+
+#ifdef CONFIG_SMP
+		rq->sd = NULL;
+		for (j = 1; j < 3; j++)
+			rq->cpu_load[j] = 0;
+		rq->active_balance = 0;
+		rq->push_cpu = 0;
+		rq->migration_thread = NULL;
+		INIT_LIST_HEAD(&rq->migration_queue);
+#endif
+		atomic_set(&rq->nr_iowait, 0);
+
+		for (j = 0; j < MAX_PRIO; j++)
+			INIT_LIST_HEAD(&rq->queue[j]);
+		memset(rq->bitmap, 0, BITS_TO_LONGS(MAX_PRIO)*sizeof(long));
+		/* delimiter for bitsearch */
+		__set_bit(MAX_PRIO, rq->bitmap);
+	}
+
+	set_load_weight(&init_task);
+
+#ifdef CONFIG_RT_MUTEXES
+	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
+#endif
+
+	/*
+	 * The boot idle thread does lazy MMU switching as well:
+	 */
+	atomic_inc(&init_mm.mm_count);
+	enter_lazy_tlb(&init_mm, current);
+
+	/*
+	 * Make us the idle thread. Technically, schedule() should not be
+	 * called from this thread, however somewhere below it might be,
+	 * but because we are the idle thread, we just pick up running again
+	 * when this runqueue becomes "idle".
+	 */
+	init_idle(current, smp_processor_id());
+}
+
+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
+void __might_sleep(char *file, int line)
+{
+#ifdef in_atomic
+	static unsigned long prev_jiffy;	/* ratelimiting */
+
+	if ((in_atomic() || irqs_disabled()) &&
+	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
+		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
+			return;
+		prev_jiffy = jiffies;
+		printk(KERN_ERR "BUG: sleeping function called from invalid"
+				" context at %s:%d\n", file, line);
+		printk("in_atomic():%d, irqs_disabled():%d\n",
+			in_atomic(), irqs_disabled());
+		dump_stack();
+	}
+#endif
+}
+EXPORT_SYMBOL(__might_sleep);
+#endif
+
+#ifdef CONFIG_MAGIC_SYSRQ
+void normalize_rt_tasks(void)
+{
+	struct task_struct *p;
+	unsigned long flags;
+	struct rq *rq;
+	int queued;
+
+	read_lock_irq(&tasklist_lock);
+	for_each_process(p) {
+		if (!rt_task(p))
+			continue;
+
+		spin_lock_irqsave(&p->pi_lock, flags);
+		rq = __task_rq_lock(p);
+
+		if ((queued = task_queued(p)))
+			deactivate_task(p, task_rq(p));
+		__setscheduler(p, SCHED_NORMAL, 0);
+		if (queued) {
+			__activate_task(p, task_rq(p));
+			resched_task(rq->curr);
+		}
+
+		__task_rq_unlock(rq);
+		spin_unlock_irqrestore(&p->pi_lock, flags);
+	}
+	read_unlock_irq(&tasklist_lock);
+}
+
+#endif /* CONFIG_MAGIC_SYSRQ */
+
+#ifdef CONFIG_IA64
+/*
+ * These functions are only useful for the IA64 MCA handling.
+ *
+ * They can only be called when the whole system has been
+ * stopped - every CPU needs to be quiescent, and no scheduling
+ * activity can take place. Using them for anything else would
+ * be a serious bug, and as a result, they aren't even visible
+ * under any other configuration.
+ */
+
+/**
+ * curr_task - return the current task for a given cpu.
+ * @cpu: the processor in question.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+struct task_struct *curr_task(int cpu)
+{
+	return cpu_curr(cpu);
+}
+
+/**
+ * set_curr_task - set the current task for a given cpu.
+ * @cpu: the processor in question.
+ * @p: the task pointer to set.
+ *
+ * Description: This function must only be used when non-maskable interrupts
+ * are serviced on a separate stack.  It allows the architecture to switch the
+ * notion of the current task on a cpu in a non-blocking manner.  This function
+ * must be called with all CPU's synchronized, and interrupts disabled, the
+ * and caller must save the original value of the current task (see
+ * curr_task() above) and restore that value before reenabling interrupts and
+ * re-starting the system.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+void set_curr_task(int cpu, struct task_struct *p)
+{
+	cpu_curr(cpu) = p;
+}
+
+#endif
