diff -urN oldtree/arch/i386/kernel/cpu/cpufreq/Kconfig newtree.2/arch/i386/kernel/cpu/cpufreq/Kconfig
--- oldtree/arch/i386/kernel/cpu/cpufreq/Kconfig	2006-09-24 17:03:56.000000000 -0400
+++ newtree.2/arch/i386/kernel/cpu/cpufreq/Kconfig	2006-09-28 17:23:28.000000000 -0400
@@ -2,6 +2,9 @@
 # CPU Frequency scaling
 #
 
+# This file has been patched with Linux PHC: https://www.dedigentoo.org/trac/linux-phc
+# Patch version: linux-phc-0.2.6-kernel-vanilla-2.6.18.patch
+
 menu "CPU Frequency scaling"
 
 source "drivers/cpufreq/Kconfig"
@@ -108,13 +111,36 @@
 config X86_SPEEDSTEP_CENTRINO
 	tristate "Intel Enhanced SpeedStep"
 	select CPU_FREQ_TABLE
-	select X86_SPEEDSTEP_CENTRINO_TABLE if (!X86_SPEEDSTEP_CENTRINO_ACPI)
+	select X86_SPEEDSTEP_CENTRINO_ACPI if (!X86_SPEEDSTEP_CENTRINO_BUILTIN || (!X86_SPEEDSTEP_CENTRINO_BUILTIN_BANIAS && !X86_SPEEDSTEP_CENTRINO_BUILTIN_DOTHAN && !X86_SPEEDSTEP_CENTRINO_BUILTIN_SONOMA ))
 	help
 	  This adds the CPUFreq driver for Enhanced SpeedStep enabled
 	  mobile CPUs.  This means Intel Pentium M (Centrino) CPUs. However,
-	  you also need to say Y to "Use ACPI tables to decode..." below
-	  [which might imply enabling ACPI] if you want to use this driver
-	  on non-Banias CPUs.
+	  you also need to say Y below to at least one of the following options:
+	   - "Use ACPI tables to decode..." [which might imply enabling ACPI]
+	   - "Built-in Tables for ... CPUs"
+
+	  You can also say yes to all of these options. In this configuration the
+	  driver will first try to use ACPI. Then if it fails it will try to use
+	  a built-in table if there is one matching the CPU.
+
+	  For details, take a look at <file:Documentation/cpu-freq/>.
+
+	  If in doubt, say N.
+
+config X86_SPEEDSTEP_CENTRINO_SYSFS
+	bool "Userspace control of CPU frequency/voltage table"
+	depends on X86_SPEEDSTEP_CENTRINO
+	depends on SYSFS
+	depends on (X86_SPEEDSTEP_CENTRINO_BUILTIN && (X86_SPEEDSTEP_CENTRINO_BUILTIN_BANIAS || X86_SPEEDSTEP_CENTRINO_BUILTIN_DOTHAN || X86_SPEEDSTEP_CENTRINO_BUILTIN_SONOMA )) || X86_SPEEDSTEP_CENTRINO_ACPI || X86_SPEEDSTEP_CENTRINO_DEFAULT
+	default y
+	help
+	  Add support for user space control of the CPU frequency/voltage 
+	  operating points table through a sysfs interface.
+
+	  If you say Y here files will be created in 
+	  /sys/devices/system/cpu/cpu*/cpufreq/op_points_table
+	  allowing reading and writing of the current table values as well as 
+	  adding or removing operating points.
 
 	  For details, take a look at <file:Documentation/cpu-freq/>.
 
@@ -127,20 +153,68 @@
 	default y
 	help
 	  Use primarily the information provided in the BIOS ACPI tables
-	  to determine valid CPU frequency and voltage pairings. It is
-	  required for the driver to work on non-Banias CPUs.
+	  to determine valid CPU frequency and voltage pairings.
+	  It is required for the driver to work on CPUs with no built-in
+	  table available
 
 	  If in doubt, say Y.
 
-config X86_SPEEDSTEP_CENTRINO_TABLE
-	bool "Built-in tables for Banias CPUs"
+config X86_SPEEDSTEP_CENTRINO_BUILTIN
+	bool "Built-in tables"
 	depends on X86_SPEEDSTEP_CENTRINO
 	default y
 	help
-	  Use built-in tables for Banias CPUs if ACPI encoding
+	  Use "hard coded" built-in tables if ACPI decoding
 	  is not available.
 
-	  If in doubt, say N.
+	  If you say Y here you must select at least one of the CPU below.
+
+	  If you are not sure of your exact CPU model you can select several CPU
+	  models or all of them. The driver will only use the table that match
+	  the exact CPU name and family/model/stepping numbers.
+	  Selecting all the built-in tables will only add a small size overhead
+	  to the kernel and an insignificant extra time to intialize the driver.
+
+	  If both ACPI and built-in tables support are enabled then built-in
+	  tables will be used only if ACPI table decoding fails.
+
+	  If you want to force usage of built-in tables over ACPI you need to say
+	  Y here and N to X86_SPEEDSTEP_CENTRINO_ACPI.
+
+	  If in doubt, say Y.
+
+config X86_SPEEDSTEP_CENTRINO_BUILTIN_BANIAS
+	bool "Built-in tables for Banias CPUs"
+	depends on X86_SPEEDSTEP_CENTRINO_BUILTIN
+	default y
+	help
+	  Use built-in tables for Banias CPUs if ACPI encoding is not available.
+	  Banias CPUs are the first generation of Pentium-M, with a 1 MB L2 cache
+	  and 400 MHz FSB manufactured on 0.13 micron process.
+
+	  If in doubt, say Y.
+
+config X86_SPEEDSTEP_CENTRINO_BUILTIN_DOTHAN
+	bool "Built-in tables for Dothan CPUs"
+	depends on X86_SPEEDSTEP_CENTRINO_BUILTIN
+	default y
+	help
+	  Use built-in tables for Dothan CPUs if ACPI encoding is not available.
+	  Dothan CPUs are the second generation of Pentium-M, with a 2 MB L2
+	  cache and 400 MHz FSB manufactured on 90 nm process.
+
+	  If in doubt, say Y.
+
+config X86_SPEEDSTEP_CENTRINO_BUILTIN_SONOMA
+	bool "Built-in tables for Sonoma CPUs"
+	depends on X86_SPEEDSTEP_CENTRINO_BUILTIN
+	default y
+	help
+	  Use built-in tables for Sonoma CPUs if ACPI encoding is not available.
+	  Sonoma CPUs are the third generation of Pentium-M, with a 2 MB L2 cache
+	  and 533 MHz FSB manufactured on 90 nm process.
+
+	  If in doubt, say Y.
 
 config X86_SPEEDSTEP_ICH
 	tristate "Intel Speedstep on ICH-M chipsets (ioport interface)"
diff -urN oldtree/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c newtree.2/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c
--- oldtree/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c	2006-09-24 17:03:56.000000000 -0400
+++ newtree.2/arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c	2006-09-28 17:23:28.000000000 -0400
@@ -13,6 +13,11 @@
  * Copyright (C) 2003 Jeremy Fitzhardinge <jeremy@goop.org>
  */
 
+/*
+ * This file has been patched with Linux PHC: https://www.dedigentoo.org/trac/linux-phc
+ * Patch version: linux-phc-0.2.6-kernel-vanilla-2.6.18.patch
+ */
+
 #include <linux/kernel.h>
 #include <linux/module.h>
 #include <linux/init.h>
@@ -49,6 +54,7 @@
 	CPU_DOTHAN_A1,
 	CPU_DOTHAN_A2,
 	CPU_DOTHAN_B0,
+	CPU_DOTHAN_C0,
 	CPU_MP4HT_D0,
 	CPU_MP4HT_E0,
 };
@@ -58,6 +64,7 @@
 	[CPU_DOTHAN_A1]	= { 6, 13, 1 },
 	[CPU_DOTHAN_A2]	= { 6, 13, 2 },
 	[CPU_DOTHAN_B0]	= { 6, 13, 6 },
+	[CPU_DOTHAN_C0]	= { 6, 13, 8 },
 	[CPU_MP4HT_D0]	= {15,  3, 4 },
 	[CPU_MP4HT_E0]	= {15,  4, 1 },
 };
@@ -68,8 +75,8 @@
 	const struct cpu_id *cpu_id;
 	const char	*model_name;
 	unsigned	max_freq; /* max clock in kHz */
-
 	struct cpufreq_frequency_table *op_points; /* clock/voltage pairs */
+	unsigned	base_freq; /* base frequency used to convert between clock rates and MSR: FSB/4 in kHz */
 };
 static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, const struct cpu_id *x);
 
@@ -79,7 +86,9 @@
 
 static struct cpufreq_driver centrino_driver;
 
-#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN
+
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_BANIAS
 
 /* Computes the correct form for IA32_PERF_CTL MSR for a particular
    frequency/voltage operating point; frequency in MHz, volts in mV.
@@ -127,7 +136,6 @@
 	{ .frequency = CPUFREQ_TABLE_END }
 };
 
-
 /* Low Voltage Intel Pentium M processor 1.20GHz (Banias) */
 static struct cpufreq_frequency_table banias_1200[] =
 {
@@ -204,13 +212,243 @@
 	.model_name	= "Intel(R) Pentium(R) M processor " name "MHz", \
 	.max_freq	= (max)*1000,	\
 	.op_points	= banias_##max,	\
+	.base_freq = 100000,		\
 }
 #define BANIAS(max)	_BANIAS(&cpu_ids[CPU_BANIAS], max, #max)
 
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_BANIAS */
+
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_DOTHAN
+/* Dothan processor datasheet 30218903.pdf defines 4 voltages for each
+   frequency (VID#A through VID#D) - this macro allows us to define all
+   of these but we only use the VID#A voltages at compile time - this may
+   need some work if we want to select the voltage profile at runtime. */
+
+#define OP(mhz, mva, mvb, mvc, mvd)					\
+	{								\
+		.frequency = (mhz) * 1000,				\
+		.index = (((mhz)/100) << 8) | ((mva - 700) / 16)       	\
+	}
+
+/* Intel Pentium M processor 733 / 1.10GHz (Dothan) */
+static struct cpufreq_frequency_table dothan_1100[] =
+{
+ 	OP( 600, 700, 700, 700, 700),
+ 	OP( 800, 748, 748, 748, 748),
+ 	OP( 900, 764, 764, 764, 764),
+ 	OP(1000, 812, 812, 812, 812),
+ 	OP(1100, 844, 844, 844, 844),
+ 	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 710 / 1.40GHz (Dothan) */
+static struct cpufreq_frequency_table dothan_1400[] =
+{
+
+	OP( 600,  988,  988,  988,  988),
+	OP( 800, 1068, 1068, 1068, 1052),
+	OP(1000, 1148, 1148, 1132, 1116),
+	OP(1200, 1228, 1212, 1212, 1180),
+	OP(1400, 1340, 1324, 1308, 1276),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 715 / 1.50GHz (Dothan) */
+static struct cpufreq_frequency_table dothan_1500[] =
+{
+	OP( 600,  988,  988,  988,  988),
+	OP( 800, 1068, 1068, 1068, 1052),
+	OP(1000, 1148, 1148, 1132, 1116),
+	OP(1200, 1228, 1212, 1212, 1180),
+	OP(1500, 1340, 1324, 1308, 1276),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 725 / 1.60GHz (Dothan) */
+static struct cpufreq_frequency_table dothan_1600[] =
+{
+	OP( 600,  988,  988,  988,  988),
+	OP( 800, 1068, 1068, 1052, 1052),
+	OP(1000, 1132, 1132, 1116, 1116),
+	OP(1200, 1212, 1196, 1180, 1164),
+	OP(1400, 1276, 1260, 1244, 1228),
+	OP(1600, 1340, 1324, 1308, 1276),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 735 / 1.70GHz (Dothan) */
+static struct cpufreq_frequency_table dothan_1700[] =
+{
+	OP( 600,  988,  988,  988,  988),
+	OP( 800, 1052, 1052, 1052, 1052),
+	OP(1000, 1116, 1116, 1116, 1100),
+	OP(1200, 1180, 1180, 1164, 1148),
+	OP(1400, 1244, 1244, 1228, 1212),
+	OP(1700, 1340, 1324, 1308, 1276),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 745 / 1.80GHz (Dothan) */
+static struct cpufreq_frequency_table dothan_1800[] =
+{
+	OP( 600,  988,  988,  988,  988),
+	OP( 800, 1052, 1052, 1052, 1036),
+	OP(1000, 1116, 1100, 1100, 1084),
+	OP(1200, 1164, 1164, 1148, 1132),
+	OP(1400, 1228, 1212, 1212, 1180),
+	OP(1600, 1292, 1276, 1260, 1228),
+	OP(1800, 1340, 1324, 1308, 1276),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 755 / 2.00GHz (Dothan) */
+static struct cpufreq_frequency_table dothan_2000[] =
+{
+	OP( 600,  988,  988,  988,  988),
+	OP( 800, 1052, 1036, 1036, 1036),
+	OP(1000, 1100, 1084, 1084, 1084),
+	OP(1200, 1148, 1132, 1132, 1116),
+	OP(1400, 1196, 1180, 1180, 1164),
+	OP(1600, 1244, 1228, 1228, 1196),
+	OP(1800, 1292, 1276, 1276, 1244),
+	OP(2000, 1340, 1324, 1308, 1276),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+#undef OP
+
+#define DOTHAN(cpuid, max, name)	\
+{	.cpu_id		= cpuid,	\
+	.model_name	= "Intel(R) Pentium(R) M processor " name "GHz", \
+	.max_freq	= (max)*1000,	\
+	.op_points	= dothan_##max,	\
+	.base_freq = 100000,		\
+}
+
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_DOTHAN */
+
+
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_SONOMA
+
+/* Intel datasheets 30526202.pdf define voltages only for highest and 
+   lowest frequency modes (HFM and LFM). 
+   For LFM the datasheet gives one typical voltage: LFMVccTyp.
+   For HFM the datasheet gives a min and a max voltage: HFMVccMin and HFMVccMax.
+   The tables below are using HFMVccMax for the highest frequency to be on
+   the safe side. The voltages of the intermediate frequencies are linearly 
+   interpolated from LFMVccTyp and HFMVccMax as it is what I have observed
+   to be used by the ACPI tables of my laptop and of some other's one.
+
+   LFMVccTyp is 988 mv for all models
+   HFMVccMin is 1260 mv for all models
+   HFMVccMax is 1356 mv for models 730, 740, 750 and 760.
+   HFMVccMax is 1372 mv for model 770.
+   HFMVccMax is 1404 mv for model 780.
+
+   As only the first voltage of each row of the tables are used I have put 
+   there the values interpolated  from HFMVccMax rounded to the next higher 16 mV step
+   For reference I have put in the other 3 columns:
+   values interpolated from HFMVccMax rounded to the nearest 1 mv
+   values interpolated from HFMVccMin rounded to the next higher 16 mv step
+   values interpolated from HFMVccMin rounded to the nearest 1 mv
+*/
+
+#define OPEX(mhz, base, mva, mvb, mvc, mvd)			\
+{								\
+	.frequency = (mhz) * 1000,				\
+	.index = (((mhz)/(base)) << 8) | ((mva - 700) / 16)	\
+}
+
+/* Intel Pentium M processor 730 / 1.60 GHz (Sonoma) */
+static struct cpufreq_frequency_table sonoma_1596[] =
+{
+	OPEX( 798, 133,  988,  988,  988,  988),
+	OPEX(1064, 133, 1116, 1111, 1084, 1079),
+	OPEX(1330, 133, 1244, 1233, 1180, 1169),
+	OPEX(1596, 133, 1356, 1356, 1260, 1260),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 740 / 1.73 GHz (Sonoma) */
+static struct cpufreq_frequency_table sonoma_1729[] =
+{
+	OPEX( 798, 133,  988,  988,  988,  988),
+	OPEX(1064, 133, 1100, 1093, 1068, 1066),
+	OPEX(1330, 133, 1212, 1198, 1148, 1143),
+	OPEX(1729, 133, 1356, 1356, 1260, 1260),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 750 / 1.86 GHz (Sonoma) */
+static struct cpufreq_frequency_table sonoma_1862[] =
+{
+	OPEX( 798, 133,  988,  988,  988,  988),
+	OPEX(1064, 133, 1084, 1080, 1068, 1056),
+	OPEX(1330, 133, 1180, 1172, 1132, 1124),
+	OPEX(1596, 133, 1276, 1264, 1196, 1192),
+	OPEX(1862, 133, 1356, 1356, 1260, 1260),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 760 / 2.00 GHz (Sonoma) */
+static struct cpufreq_frequency_table sonoma_1995[] =
+{
+	OPEX( 798, 133, 988, 988, 988, 988),
+	OPEX(1064, 133, 1084, 1070, 1052, 1048),
+	OPEX(1330, 133, 1164, 1152, 1116, 1109),
+	OPEX(1596, 133, 1244, 1233, 1180, 1169),
+	OPEX(1995, 133, 1356, 1356, 1260, 1260),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 770 / 2.13 GHz (Sonoma) */
+static struct cpufreq_frequency_table sonoma_2128[] =
+{
+	OPEX( 798, 133, 988, 988, 988, 988),
+	OPEX(1064, 133, 1068, 1065, 1052, 1042),
+	OPEX(1330, 133, 1148, 1142, 1100, 1097),
+	OPEX(1596, 133, 1228, 1218, 1164, 1151),
+	OPEX(1862, 133, 1308, 1295, 1212, 1206),
+	OPEX(2128, 133, 1372, 1372, 1260, 1260),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+/* Intel Pentium M processor 780 / 2.26 GHz (Sonoma) */
+static struct cpufreq_frequency_table sonoma_2261[] =
+{
+	OPEX( 798, 133, 988, 988, 988, 988),
+	OPEX(1064, 133, 1068, 1064, 1052, 1037),
+	OPEX(1330, 133, 1148, 1139, 1100, 1087),
+	OPEX(1596, 133, 1228, 1215, 1148, 1136),
+	OPEX(1862, 133, 1292, 1291, 1196, 1186),
+	OPEX(2261, 133, 1404, 1404, 1260, 1260),
+	{ .frequency = CPUFREQ_TABLE_END }
+};
+
+#undef OPEX
+
+#define SONOMA(cpuid, max, base, name)	\
+{	.cpu_id		= cpuid,	\
+	.model_name	= "Intel(R) Pentium(R) M processor " name "GHz", \
+	.max_freq	= (max)*1000,	\
+	.op_points	= sonoma_##max,	\
+	.base_freq	= (base)*1000,	\
+}
+
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_SONOMA */
+
+
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_YONAH
+// To Do
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_YONAH */
+
+
 /* CPU models, their operating frequency range, and freq/voltage
    operating points */
 static struct cpu_model models[] =
 {
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_BANIAS
+	/* Builtin tables for Banias CPUs */
 	_BANIAS(&cpu_ids[CPU_BANIAS], 900, " 900"),
 	BANIAS(1000),
 	BANIAS(1100),
@@ -220,18 +458,51 @@
 	BANIAS(1500),
 	BANIAS(1600),
 	BANIAS(1700),
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_BANIAS */
 
-	/* NULL model_name is a wildcard */
-	{ &cpu_ids[CPU_DOTHAN_A1], NULL, 0, NULL },
-	{ &cpu_ids[CPU_DOTHAN_A2], NULL, 0, NULL },
-	{ &cpu_ids[CPU_DOTHAN_B0], NULL, 0, NULL },
-	{ &cpu_ids[CPU_MP4HT_D0], NULL, 0, NULL },
-	{ &cpu_ids[CPU_MP4HT_E0], NULL, 0, NULL },
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_DOTHAN
+	/* Builtin tables for Dothan B0 CPUs */
+	DOTHAN(&cpu_ids[CPU_DOTHAN_B0], 1100, "1.10"),
+	DOTHAN(&cpu_ids[CPU_DOTHAN_B0], 1400, "1.40"),
+	DOTHAN(&cpu_ids[CPU_DOTHAN_B0], 1500, "1.50"),
+	DOTHAN(&cpu_ids[CPU_DOTHAN_B0], 1600, "1.60"),
+	DOTHAN(&cpu_ids[CPU_DOTHAN_B0], 1700, "1.70"),
+	DOTHAN(&cpu_ids[CPU_DOTHAN_B0], 1800, "1.80"),
+	DOTHAN(&cpu_ids[CPU_DOTHAN_B0], 2000, "2.00"),
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_DOTHAN */
+
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_SONOMA
+	/* Builtin tables for Dothan C0 CPUs, a.k.a Sonoma */
+	SONOMA(&cpu_ids[CPU_DOTHAN_C0], 1596, 133, "1.60"),
+	SONOMA(&cpu_ids[CPU_DOTHAN_C0], 1729, 133, "1.73"),
+	SONOMA(&cpu_ids[CPU_DOTHAN_C0], 1862, 133, "1.86"),
+	SONOMA(&cpu_ids[CPU_DOTHAN_C0], 1995, 133, "2.00"),
+	SONOMA(&cpu_ids[CPU_DOTHAN_C0], 2128, 133, "2.13"),
+	SONOMA(&cpu_ids[CPU_DOTHAN_C0], 2261, 133, "2.26"),
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_SONOMA */
+
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_YONAH
+	/* Builtin tables for Yonah CPUs */
+	// To Do
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN_YONAH */
+
+	/* NULL model_name is a wildcard to catch known CPU IDs for which
+	 * we don't have any builtin table */
+	{ &cpu_ids[CPU_BANIAS], NULL, 0, NULL, 0 },
+	{ &cpu_ids[CPU_DOTHAN_A1], NULL, 0, NULL, 0 },
+	{ &cpu_ids[CPU_DOTHAN_A2], NULL, 0, NULL, 0 },
+	{ &cpu_ids[CPU_DOTHAN_B0], NULL, 0, NULL, 0 },
+	{ &cpu_ids[CPU_DOTHAN_C0], NULL, 0, NULL, 0 },
+	{ &cpu_ids[CPU_MP4HT_D0], NULL, 0, NULL, 0 },
+	{ &cpu_ids[CPU_MP4HT_E0], NULL, 0, NULL, 0 },
 
+	/* End of the table */
 	{ NULL, }
 };
 #undef _BANIAS
 #undef BANIAS
+#undef DOTHAN
+#undef SONOMA
 
 static int centrino_cpu_init_table(struct cpufreq_policy *policy)
 {
@@ -272,7 +543,7 @@
 
 #else
 static inline int centrino_cpu_init_table(struct cpufreq_policy *policy) { return -ENODEV; }
-#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE */
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_BUILTIN */
 
 static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, const struct cpu_id *x)
 {
@@ -293,6 +564,13 @@
 	 * for centrino, as some DSDTs are buggy.
 	 * Ideally, this can be done using the acpi_data structure.
 	 */
+
+	if ((centrino_model[cpu]) && (centrino_model[cpu]->base_freq != 0))
+	{
+		msr = (msr >> 8) & 0xff;
+		return msr * centrino_model[cpu]->base_freq;
+	}
+
 	if ((centrino_cpu[cpu] == &cpu_ids[CPU_BANIAS]) ||
 	    (centrino_cpu[cpu] == &cpu_ids[CPU_DOTHAN_A1]) ||
 	    (centrino_cpu[cpu] == &cpu_ids[CPU_DOTHAN_B0])) {
@@ -508,6 +786,7 @@
 	centrino_model[cpu]->op_points[p->state_count].frequency = CPUFREQ_TABLE_END;
 
 	cur_freq = get_cur_freq(cpu);
+	centrino_model[cpu]->base_freq = 0;
 
 	for (i=0; i<p->state_count; i++) {
 		if (!p->states[i].core_frequency) {
@@ -519,8 +798,8 @@
 		if (extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0) !=
 		    (centrino_model[cpu]->op_points[i].frequency)) {
 			dprintk("Invalid encoded frequency (%u vs. %u)\n",
-				extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0),
-				centrino_model[cpu]->op_points[i].frequency);
+			extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0),
+			centrino_model[cpu]->op_points[i].frequency);
 			result = -EINVAL;
 			goto err_kfree_all;
 		}
@@ -548,6 +827,459 @@
 static inline int centrino_cpu_early_init_acpi(void) { return 0; }
 #endif
 
+static int centrino_target (struct cpufreq_policy *policy,
+			    unsigned int target_freq,
+			    unsigned int relation);
+
+
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_SYSFS
+/************************** sysfs interface for user defined voltage table ************************/
+
+static struct cpufreq_frequency_table **original_table = NULL;
+
+static void check_origial_table (unsigned int cpu)
+{
+	int           i;
+
+	if (!original_table) 
+	{
+		original_table = kmalloc(sizeof(struct cpufreq_frequency_table *)*NR_CPUS, GFP_KERNEL);
+		for (i=0; i < NR_CPUS; i++)
+		{
+			original_table[i] = NULL;
+		}
+	}
+
+	if (!original_table[cpu]) 
+	{
+		/* Count number of frequencies and allocate memory for a copy */
+		for (i=0; centrino_model[cpu]->op_points[i].frequency != CPUFREQ_TABLE_END; i++);
+		/* Allocate memory to store the copy */
+		original_table[cpu] = (struct cpufreq_frequency_table*) kmalloc(sizeof(struct cpufreq_frequency_table)*(i+1), GFP_KERNEL);
+		/* Make copy of frequency/voltage pairs */
+		for (i=0; centrino_model[cpu]->op_points[i].frequency != CPUFREQ_TABLE_END; i++) 
+		{
+			original_table[cpu][i].frequency = centrino_model[cpu]->op_points[i].frequency;
+			original_table[cpu][i].index = centrino_model[cpu]->op_points[i].index;
+		}
+		original_table[cpu][i].frequency = CPUFREQ_TABLE_END;
+	}
+}
+
+
+static ssize_t show_user_voltage (struct cpufreq_policy *policy, char *buf)
+{
+	ssize_t       bytes_written = 0;
+	unsigned int  cpu          = policy->cpu;
+	unsigned int  op_index     = 0;
+	unsigned int  op_count     = 0;
+	unsigned int  voltage      = 0;
+	unsigned int  frequency    = 0;
+
+	//dprintk("showing user voltage table in sysfs\n");
+
+	while ( (centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_TABLE_END)
+	       && (bytes_written<PAGE_SIZE-16) )
+	{
+		//dprintk("getting state %i \n", op_index);
+		frequency = centrino_model[cpu]->op_points[op_index].frequency;
+		if (frequency != CPUFREQ_ENTRY_INVALID)
+		{
+			op_count++;
+			if (op_count>1)
+				bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE-bytes_written-1, ",");
+			voltage = centrino_model[cpu]->op_points[op_index].index;
+			voltage = 700 + ((voltage & 0xFF) << 4); 
+			//dprintk("writing voltage %i: %u mV \n", op_index, voltage);
+			bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE-bytes_written-1, "%u",voltage);
+		}
+		else
+		{
+			// This operating point of the table is invalid, ignoring it.
+			dprintk("Ignoring invalid operating point %i \n", op_index);
+		}
+		op_index++;
+	}
+	bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE-bytes_written-1, "\n");	
+	buf[PAGE_SIZE-1] = 0;
+	return bytes_written;
+}
+
+static ssize_t 
+store_user_voltage (struct cpufreq_policy *policy, const char *buf, size_t count) 
+{
+	unsigned int  cpu;
+	const char   *curr_buf;
+	unsigned int  curr_freq;
+	unsigned int  op_index;
+	int           isok;
+	char         *next_buf;
+	unsigned int  op_point;
+	ssize_t       retval;
+	unsigned int  voltage;
+
+	if (!policy)
+	    return -ENODEV;
+	cpu = policy->cpu;
+	if (!centrino_model[cpu] || !centrino_model[cpu]->op_points)
+	    return -ENODEV;
+
+	check_origial_table(cpu);
+
+	op_index = 0;
+	curr_buf = buf;
+	next_buf = NULL;
+	isok     = 1;
+	
+	while ((centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_TABLE_END) 
+		&& (isok))
+	{
+		if (centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_ENTRY_INVALID)
+		{
+			voltage = simple_strtoul(curr_buf, &next_buf, 10);
+			if ((next_buf != curr_buf) && (next_buf != NULL))
+			{
+				if ((voltage >= 700) && (voltage<=1600))
+				{
+					voltage = ((voltage - 700) >> 4) & 0xFF;
+					op_point = (original_table[cpu])[op_index].index;
+					if (voltage <= (op_point & 0xFF))
+					{
+						//dprintk("setting control value %i to %04x\n", op_index, op_point);
+						op_point = (op_point & 0xFFFFFF00) | voltage;
+						centrino_model[cpu]->op_points[op_index].index = op_point;
+					}
+					else
+					{
+						op_point = (op_point & 0xFFFFFF00) | voltage;
+						dprintk("not setting control value %i to %04x because requested voltage is not lower than the default value\n", op_index, op_point);
+						//isok = 0;
+					}
+				}
+				else
+				{
+					dprintk("voltage value %i is out of bounds: %u mV\n", op_index, voltage);
+					isok = 0;
+				}
+				curr_buf = next_buf;
+				if (*curr_buf==',')
+					curr_buf++;
+				next_buf = NULL;
+			}
+			else
+			{
+				dprintk("failed to parse voltage value %i\n", op_index);
+				isok = 0;
+			}
+		}
+		else
+		{
+			// This operating point of the table is invalid, ignoring it.
+			dprintk("Ignoring invalid operating point %i \n", op_index);
+		}
+		op_index++;
+	}
+
+	if (isok)
+	{
+		retval = count;
+		curr_freq = cpufreq_get(policy->cpu);
+		centrino_target(policy, curr_freq, CPUFREQ_RELATION_L);
+	}
+	else
+	{
+		retval = -EINVAL;
+	}
+
+	return retval;
+}
+
+static struct freq_attr centrino_freq_attr_voltage_table = 
+{
+	.attr = { .name = "voltage_table", .mode = 0644, .owner = THIS_MODULE },
+	.show = show_user_voltage,
+	.store = store_user_voltage,
+};
+
+
+static ssize_t show_user_op_points (struct cpufreq_policy *policy, char *buf)
+{
+	ssize_t       bytes_written = 0;
+	unsigned int  cpu          = policy->cpu;
+	unsigned int  op_index     = 0;
+	unsigned int  op_count     = 0;
+	unsigned int  voltage      = 0;
+	unsigned int  frequency    = 0;
+
+	//dprintk("showing user voltage table in sysfs\n");
+
+	while ( (centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_TABLE_END)
+	       && (bytes_written<PAGE_SIZE-16) )
+	{
+		//dprintk("getting state %i \n", i);
+		frequency = centrino_model[cpu]->op_points[op_index].frequency;
+		if (frequency != CPUFREQ_ENTRY_INVALID)
+		{
+			op_count++;
+			if (op_count>1)
+				bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE-bytes_written-1, ",");
+			voltage = centrino_model[cpu]->op_points[op_index].index;
+			voltage = 700 + ((voltage & 0xFF) << 4); 
+			//dprintk("writing voltage %i: %u mV \n", i, voltage);
+			bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE-bytes_written-2, "%u:%u",frequency,voltage);
+		}
+		else
+		{
+			// This operating point of the table is invalid, ignoring it.
+			dprintk("Ignoring invalid operating point %i \n", op_index);
+		}
+		op_index++;
+	}
+	bytes_written += snprintf (&buf[bytes_written],PAGE_SIZE-bytes_written-1, "\n");	
+	buf[PAGE_SIZE-1] = 0;
+	return bytes_written;
+}
+
+static ssize_t 
+store_user_op_points (struct cpufreq_policy *policy, const char *buf, size_t count) 
+{
+	unsigned int  cpu;
+	const char   *curr_buf;
+	unsigned int  curr_freq;
+	unsigned int  op_index;
+	unsigned int  op_count;
+	int           isok;
+	char         *next_buf;
+	unsigned int  op_point;
+	ssize_t       retval;
+	unsigned int  voltage;
+	unsigned int  frequency;
+	int           found;
+
+	if (!policy)
+	    return -ENODEV;
+	cpu = policy->cpu;
+	if (!centrino_model[cpu] || !centrino_model[cpu]->op_points)
+	    return -ENODEV;
+
+	check_origial_table(cpu);
+
+	op_count = 0;
+	curr_buf = buf;
+	next_buf = NULL;
+	isok     = 1;
+	
+	while ( (isok) && (curr_buf != NULL) )
+	{
+		op_count++;
+		// Parse frequency
+		frequency = simple_strtoul(curr_buf, &next_buf, 10);
+		if ((next_buf != curr_buf) && (next_buf != NULL))
+		{
+			// Parse separator between frequency and voltage 
+			curr_buf = next_buf;
+			next_buf = NULL;
+			if (*curr_buf==':')
+			{
+				curr_buf++;
+				// Parse voltage
+				voltage = simple_strtoul(curr_buf, &next_buf, 10);
+				if ((next_buf != curr_buf) && (next_buf != NULL))
+				{
+					if ((voltage >= 700) && (voltage<=1600))
+					{
+						voltage = ((voltage - 700) >> 4) & 0xFF;
+						op_index = 0;
+						found = 0;
+						while (centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_TABLE_END)
+						{
+							if ((centrino_model[cpu]->op_points[op_index].frequency == frequency)
+							    && (centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_ENTRY_INVALID))
+							{
+								found = 1;
+								op_point = (original_table[cpu])[op_index].index;
+								if (voltage <= (op_point & 0xFF))
+								{
+									//dprintk("setting control value %i to %04x\n", op_index, op_point);
+									op_point = (op_point & 0xFFFFFF00) | voltage;
+									centrino_model[cpu]->op_points[op_index].index = op_point;
+								}
+								else
+								{
+									op_point = (op_point & 0xFFFFFF00) | voltage;
+									dprintk("not setting control value %i to %04x because requested voltage is not lower than the default value (%u MHz)\n", op_index, op_point, frequency);
+								}
+							}
+							op_index++;
+						}
+						if (found == 0)
+						{
+							dprintk("operating point # %u not found: %u MHz\n", op_count, frequency);
+							isok = 0;
+						}
+					}
+					else
+					{
+						dprintk("operating point # %u voltage value is out of bounds: %u mV\n", op_count, voltage);
+						isok = 0;
+					}
+					// Parse seprator before next operating point, if any
+					curr_buf = next_buf;
+					next_buf = NULL;
+					if (*curr_buf==',')
+						curr_buf++;
+					else
+						curr_buf = NULL;
+				}
+				else
+				{
+					dprintk("failed to parse operating point # %u voltage\n", op_count);
+					isok = 0;
+				}
+			}
+			else
+			{
+				dprintk("failed to parse operating point # %u\n", op_count);
+				isok = 0;
+			}
+		}
+		else
+		{
+			dprintk("failed to parse operating point # %u frequency\n", op_count);
+			isok = 0;
+		}
+	}
+
+	if (isok)
+	{
+		retval = count;
+		curr_freq = cpufreq_get(policy->cpu);
+		centrino_target(policy, curr_freq, CPUFREQ_RELATION_L);
+	}
+	else
+	{
+		retval = -EINVAL;
+	}
+
+	return retval;
+}
+
+static struct freq_attr centrino_freq_attr_op_points_table = 
+{
+	.attr = { .name = "op_points_table", .mode = 0644, .owner = THIS_MODULE },
+	.show = show_user_op_points,
+	.store = store_user_op_points,
+};
+
+unsigned long rounded_div(unsigned long x, unsigned long y)
+{
+  return (((x*2) / y)+1)/2;
+}
+
+static ssize_t show_FSB_base_freq (struct cpufreq_policy *policy, char *buf)
+{
+	ssize_t       bytes_written = 0;
+	unsigned int  cpu           = policy->cpu;
+	unsigned int  frequency;
+	unsigned int  index;
+	unsigned int  op_index			= 0;
+
+	frequency = centrino_model[cpu]->base_freq;
+	if (frequency!=0)
+	{
+		bytes_written += snprintf (buf, PAGE_SIZE-2, "User defined base FSB frequency:\n%u kHz\n",frequency);
+	}
+
+	bytes_written += snprintf (buf+bytes_written, PAGE_SIZE-bytes_written-2, 
+	                           "Base FSB frequency computed from operating points table:\n");
+
+	check_origial_table(cpu);
+	while ((original_table[cpu][op_index].frequency != CPUFREQ_TABLE_END)
+	       && (bytes_written < PAGE_SIZE-3))
+	{
+		index = original_table[cpu][op_index].index;
+		index = (index >> 8) & 0xFF;
+		if (index > 0)
+		{
+			frequency = rounded_div((original_table[cpu][op_index].frequency), index);
+			bytes_written += snprintf (buf+bytes_written, PAGE_SIZE-bytes_written-2, "%u kHz (%u / %u)\n",
+			                           frequency, original_table[cpu][op_index].frequency, index);
+		}
+		op_index++;
+	}
+
+	buf[PAGE_SIZE-1] = 0;
+	return bytes_written;
+}
+
+static ssize_t 
+store_FSB_base_freq (struct cpufreq_policy *policy, const char *buf, size_t count) 
+{
+	unsigned int  cpu;
+	const char   *curr_buf;
+	unsigned int  curr_freq;
+	unsigned int  frequency;
+	unsigned int  index;
+	char         *next_buf;
+	unsigned int  op_index			= 0;
+	ssize_t       retval;
+
+	if (!policy)
+		return -ENODEV;
+	cpu = policy->cpu;
+	if (!centrino_model[cpu] || !centrino_model[cpu]->op_points)
+		return -ENODEV;
+
+	curr_buf = buf;
+	next_buf = NULL;
+	frequency = simple_strtoul(curr_buf, &next_buf, 10);
+	if ((next_buf != curr_buf) && (next_buf != NULL))
+	{
+		if (centrino_model[cpu]->base_freq != frequency)
+		{
+			centrino_model[cpu]->base_freq = frequency;
+
+			check_origial_table(cpu);
+			while (centrino_model[cpu]->op_points[op_index].frequency != CPUFREQ_TABLE_END)
+			{
+				if (frequency>0)
+				{
+					index = original_table[cpu][op_index].index;
+					index = (index >> 8) & 0xFF;
+					if (index > 0)
+					{
+						centrino_model[cpu]->op_points[op_index].frequency = frequency * index;
+					}
+				}
+				else
+				{
+					centrino_model[cpu]->op_points[op_index].frequency = original_table[cpu][op_index].frequency;
+				}
+				op_index++;
+			}
+		}
+
+		retval = count;
+		curr_freq = cpufreq_get(policy->cpu);
+		centrino_target(policy, curr_freq, CPUFREQ_RELATION_L);
+	}
+	else
+	{
+		retval = -EINVAL;
+	}
+
+	return retval;
+}
+
+static struct freq_attr centrino_freq_attr_FSB_Base_Freq = 
+{
+	.attr = { .name = "FSB_base_frequency", .mode = 0644, .owner = THIS_MODULE },
+	.show = show_FSB_base_freq,
+	.store = store_FSB_base_freq,
+};
+
+#endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_SYSFS */
+
 static int centrino_cpu_init(struct cpufreq_policy *policy)
 {
 	struct cpuinfo_x86 *cpu = &cpu_data[policy->cpu];
@@ -799,6 +1531,11 @@
 
 static struct freq_attr* centrino_attr[] = {
 	&cpufreq_freq_attr_scaling_available_freqs,
+#ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_SYSFS
+	&centrino_freq_attr_voltage_table,
+	&centrino_freq_attr_op_points_table,
+	&centrino_freq_attr_FSB_Base_Freq,
+#endif
 	NULL,
 };
 
@@ -863,3 +1600,4 @@
 
 late_initcall(centrino_init);
 module_exit(centrino_exit);
